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FOREWORD

This paper presents the results of a study undertaken
to develop methods for ordering axd organizing technical,
social, economic and other data that can be presented in array
form. The study leading to the development of this report
was conducted as independent research at the Institute for
Defense Analyses. The theory and development of the
algorithms described in this paper are the work of members of
the Systems Evaluation Division.
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PART I: GENERAL DESCRIPTION :'




i. INTRODUCTION

Since the introduction of the large digital computers, methods of multivariate analysis’
are being developed that utilize more effectively the computational resources and character-
istics of the computer than some of the more conventional and established statistical tech-
niques. Thes¢ new methods are being employed because it is now possible to undertake data
analysis problems in considerably greater detail than was previously feasible. A class of
techniques that is able to account for detailed individual relationships as well as macroscopic
data structure is exemplified by the cluster-seeking? methods. Ball (Ref. 1) has accurately
pointed out that many classical statistical techniques depend heavily on statistical quantities
estiniated fromn the data and that this “averaging’” from the data can sometimes lead to
erroneous conclusions. This is simply because microscopic variations in the data cannot, in
general, be detected from the statistical quantities estimated with the result that small but
significanc information can be overwhelmed and even lost under the pressure of larger
siatistical trends. Furthermore, many of these classical techniques such as principal component
analysis (Ref. 28) or factor analysis (Ref. 28) implicitly assume data distributions that are not
always present. Thus, it appears that there is a definite need for better direct analysis
tcchniques so that it is not necessary to completely rely on funciions of data or on
assumptions regarding their distribution.

This paper presents three new direct data analysis techniques that were developed at
the Institute for Defense Analyses. One of the algorithms, the Bond Energy Algorithm, shares
a few of the same objectives as some of the other cluster-seeking techniques (Refs. 2 through
20) but has several important differences and advantages. The Moment Ordering Algoritim has
as its principal goal the discovery of a single dominant relationship in the data, while the
Moment Compression Algorithm attempts to factor the data into separable pieces or clusters.
Two important characteristics that all three of these methods share is that they operaie
directly on the non-negative raw input matrix data and that they reorganize and reorder the
matrix data by performing row and column permutations in order to reveal obscure and

1. Multivariate Asalysis iacludes such raathematical techaiques as Regreasion Analysis, Factos Analysis, Principal
Component Analyds, Canonical Analysis, Cluster Analyd, etc,
2. Quster Secking techniques ate those dats analyds methods which sesk to ideatify groups of hinilar entities
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potentially informative data patterns. The output of all these algorithms, then, is a new dafa
i matrix with its resulting new ordering. §

AT b B e ek A

In Chapter II, the most important features and characteristics of each of the three "3

algorithms will be briufly described. Then, in Chapter III, the major results and conclusions of ,E g
b this study will be presented. Part II of this paper contains a detailed description of the theory . !
5;! and development of the three algorithms along with a number of pertinent examples which §
] illustrate the favorable characteristics and general applicability of these methods. e
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Il. DESCRIPTION AND OBJECTIVES OF THE THREE ALGORITHMS

In this chapter the three data ordering algorithms are briefly described and their
objectives are compared. More detailed description of the theory and development of these
algorithms, along with a number of applications, will be found in Part il.

A. THE BOND ENERGY ALGORITHM!

The Bond Energy Algorithm? is capable of identifying and displaying natural groups
and clusters that occur in complex data matrices. Moreover, the algorithm is able to uncover
and display the associations and interrelationships of these groups with one another. These
tasks are accomplished through the use of a numerical measure of how clustered or clumpy? a
matrix is. The proposed measure of effectiveness (ME) attains its maximum value when the
matrix assumes a very clumpy or aggregated form. It has beer found that the structures and
relaiionships existing in data matrices more clearly exhibit themselves when the matrices are
presented in more aggregated forms corresponding to larger MEs,

The ME is defined as follows. Assume that the matrix of rclationships (or transactions,

flow, etc,) has dimension M by N with non-negative clements ajj- The quantity aj; is defined
4
as

1

g [an Lit4- l.j”i,w*ai.j-l]'

From Fig. 1 it -an be seen that gjj is just one half the sum of the horizontal snd vertical
nearest neighbors of ay. The unnomalized ME can now be defined as

= 3 @
ME 2 G -
all ij
The ME clearly is equa! to the sum of all the vertical and honzontal bond strengths in the
matrix where the strength of a bond between two horizontally or vertically adjacent elements

1. The theory and development of this algorithm are due to D¢ W.T, McCarmick, Jr.

2. Tnis algorithm i 80 called bevause its meature of effectivencss involves products of nearest roighbor matris
cleruzats that may be likened to bond strengths

3 Aclumpy matrix it one whos lusge elements lie near other large eleineats, forming aggregates called clumps.

4. With lhemvcnmnuod- R R TR VY =0,

5
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FIGURE 1. Representation of Bond Energy ME

is defined as the product of the elements. A siightly more general form of this ME is presented
in the more detailed description in Part If pf this paper.

Te obtzin maximum “‘clumpiness” of the matrix it is necessary to maximize the ME
over all row pewautations and column permutations oi the matrix, i.e.,

max
all row perm {ME= 2 3y ayj }
& ¢o' Derm call iy

This problem can be formulated equivalently as two quadratic assignment problems® and its
optimal solution can be determined. However, this rigcrous solution is quite time consuming
so a subopthnal algoiithm has bee¢n developed. The suboptimal algorithm is a sequential
selection procedure that has proven to be efficient and rapid. The description and details of
this technique are contained ui Chapter 1 of Part 1.

A simple example wili illustrate the sensitivity of the ME and the utility of a
rearrangement of tne matrx data. Suppose we have a symmetric matrix showing certain
associations or relationships between entities A, B, C and D. The initial relationship matrix is
shown in Fig. 2a, where the ones in the i.ith elemonts of the matrix represent the existence of
~elationships between entiiies i and i and the zeros indicate the absence of relationships. It is
clear from the definition of the ME and the observation that there are no bonds, that the ME =
0 for the matrix in Fig. 2a. Figures 2b, 2c, 2d, and 2e show progressively greater lovels of
clumpiness and their MEs are 2, 4, 6, and 8, respectively. Application of the Bond Energy
Algorithm produces the ordering shown in Fig. 2e, where it is cleie thal two clusters have been

S. Seo Appendix A.
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A B C D A B C D
i

All 0 1 0 AllT 0 1 0
B{O 1 0 1 BlC 1 0 1
. cCijv o 1 o0 Djo 1 0 1
Di0 1 0 1 cCilt 0 1 0
i FIGURE 20. ME=0 FIGURE 2b. ME=2
j A s C D A C B D
Alt 0 1 0 Al 1 0 0
Clv 0 1 o0 B({C 0 1 1
B8]0 1 0 1 D|o 0 1 1
DjO 1 0 1 cjitr 1.0 0
FIGURE 2c. ME=4 FIGURE Zzd. ME=6

A C B D

Allt 1 0 0

cf{v 1 0 0

B{O 0 1 1

Dio 0 1 1

FIGURE 2e. ME=§

t-12-4%-4
FIGURE 2, lilustration of the Sansitivity of the Bond Energy ME
‘ uncovered and it fact the entities have Uean factored into two unrelated and distinct groups

(i.e., A,Cand B, D).

This simple example gives an indication of how the Bond Energy Algorithm can
produce clearer and deeper understanding of the matrix data by simple rearrangement.
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B. THE MOMENT ORDERING ALGORITHM®

The purpose of the Moment Ordering Algorithm is to identify the single dominant
relationship in an array of data, and to reorder the rows and columns of the array to produce a
ranking under this dominant relationship. That is to say, the algorithm finds the principal axis’
for the data, and arranges both the rows and the columns according to the implicit underlying
variable corresponding to the axis. The concept may be made clearer by considering the two
examples discussed in Part Il One example involves the distribution of pottery types in a
group of archeological sites. The underlying variable is the age of the site, and the algorithm
therefore produces a chronological ordering of the sites. The second example involves the
voting patierns of a group of Senators. The algorithm determines that the underlying variable
is the degree of liberalism/conservatism, and therefore orders the Senators (and the bills voted
upon by them) along a liberal/conservative spectrum.

The underlying idea behind the algorithm is the fact that if two rows are very similar to
each other their mean row moments should be close to each other in value. The mean row
moment X, of the ith row is defined as

N N
= X jaij/.z 24
ji=1 i=1

where aj is the ijth element in the array. Similarly, if two columns are closely related, their
mean column moments, defined analogously, should be close in value. The algorithm, then, is
an attempt to use these moments to rearrange the array so that rows (or columns) are as near
as possible to other similar rows (or columns).

The algorithm begins by computing the row moments for the array in its initial state,
and placing the rows in ascending order of their moments. The column moments are then
calculated, and the columns reordered according to their moments. This reordering, however,
changes the values of the row moments. The row moments are therefore recalculated and the
rows reordered. The procedure is continued, alternating between row and column reorderings,
until an ordering is reached in which both the rows and columns are arranged in order of their
moments. Such a stable state is considered a solution. The principal output of the algorithm is
then the one-dimensional ordering of the entities on the array axes on the basis of whatever
dominant relationship may exist in the data.

6. The initial Idea for this algorithm and foe this research paper is due to Dr. John J. Martin. The algorithm was
impeoved and developed by Dr. Stephen B. Deutsch.

7. A peincipal axis may be thought of as an “undeslying vasiable™ by means of which the explicit variables can be
listed in a one-dimensional ordering.
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As an example of how the Moment Ordering Algorithm operates on a sample data
array, consider the relationship matrices given in Fig. 3. When the algorithm is applied to the
data array of Fig. 3a, the new array shown in Fig. 3b is obtained. Similar rows are now
adjacent to each other, and the overall ordering of the rows reflects their placement along the
principal axis of the array. Note the concentration of the non-zero elements along the main
diagonal of the new array. This concentration is a property of solutions found by the
algorithm. The details of this method and some examples which have been successfully
handled are presented in Part II.

A B C D E DB AE C
AT 1T 0 0 Dj1 1 0 0 O
Bl 1. 0 1 0 B|Y 1.1 0 0
c{lo o 1 0 1 Al0O 1T 1 1 0
D{0O 1 0 1 O E|1O0 O 1 1 1
EITT O 1T 0 1 cCig 0o 0 1 1
FIGURE 3a. | FIGURE 3b.

11-12-69-5

FIGURE 3. An Example of the Moment Ordering Algorithm

C. THE MOMENT COMPRESSION ALGORITHM?®

The Moment Compression Algorithm is designed to identify natural groups and clusters
of entities by factoring the data relationshi;: matrix into a number of pieces. The algorithm
accomplishes this by finding the data ordering wh:ch minimizes a specific ME. The ME used by
the Moment Compression Algorithm is just the sum of all the row and column second
moments about their respective means, that is

M N
ME= ¥ n+ 2 g
=1 j=1

where r; and ¢j are the ith row moment and jth column moment. The minimization of this ME
over all row and column permutations has the effect of compressing the data in such a way as
to force the non-zero matrix elements toward a block-factored fonm.

8. The theory and development of this algosithm are due to De. Paul J. Schweitzer.

9



This ME was devised because of the observation that the rows and columns of a matrix
in perfect block-factored form, when contrasted with the same matrix after row or column
permutations, have the smallest sum of the mom.ents of inertia about their means. That is, any
row or column permutation of a matrix in perfect block form will “expand” a block and make
it less dense, thereby increasing the miairix’s total moment of inertia. A matrix in perfect
block-factored form is shown in Fig. 4.

/
T

11-12-6%-6

FIGURE 4. Matrix with Perfect Biock Form

The problem of ME maximization can be posed as two quadratic assignment problems;
however, in practice, it has been solved sub-optimally by an iterative gradient procedure
involving linear assignment problems.

When the Moment Compression Algorithm is applied to any of the matrix orderings of
Fig. 2 the resulting ordering is the completely block-factored form shown in Fig. 2e. In this
special case when the matrix is completely block factorable. the Bond Energy and the Moment
Compression Algorithms will both produce block-factored form.

D. CONTRASTS AMONG THE THREE ALGORITHMS

In order to understand better exactly how the three algorithms differ, it is useful to
compare their objectives and their computational methods.

The single abjective of the Moment Compression Algorithm is to identify groups or
clusters by rearrangement of the matrix data. In addition to sharing this objective the Bond
Energy Algorithm has the additional objective of determining whether and in what manner
these groups are related to one another.® Computationally, the MEs of the two algorithms

9. See discusslon before Fig. 6.
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differ substantially in that the Bond Energy ME depends on nearest-neighbor interactions
while the Moment Compression ME is completely global. A consequence of this difference is
that the Bond Energy ME more adequately describes the topological properties of clumpiness,
denseness and connectedness. Another consequence is the greater computational ease in
optimizing the Bond Energy ME by use of a rapid sequential selection algorithin which
exploits its nearest neighbor dependency.

The Moment Ordering Algorithm differs markedly from both of the previous data
ordering methods. Instead of attempting to identify groups, clusters or group interrelation-
ships, the main objective of the Moment Ordering Algorithm is to produce a one-dimensional
ordering of entities along the axes of the matrix. It accomplished this by finding a dominant
i variable or principal axis along which these entitics can be ordered. Computationally, like the
Moment Compression Algorithm, the Moment Ordering Algorithm employs moments which
are global matrix measures, and thus it is not as sensitive to local details as the Bond Energy
Algorithm. Its principai computational difference, though, from the Bond Energy and the
Moment Compression Algorithms is that it is a completely heuristic iterative techrique that
does not attempt to optimize any measure of effectiveness.
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11l. CONCLUSIONS

The following statements are the general assessments and conclusions regarding the
applicability, overall usefulness, and efficiency of the three algorithms developed for direct
analysis of multivariate syste:s by matrix reordering,

e The Bond Energy Algorithm proved to be the most generally useful and
versatile of the three algorithms for treating certain problems of multivariate
analysis. It is capable not only of classifying and clustering data but also of
successfully identifying areas of interrelationships that exist among these
clusters. It has been found to be an efficient and general approach to problems
involving clusters and group structures.

® The Moment Ordering Algorithm is an efficient technique for uncovering and
displaying a univariate relationship inherent in the data. That is, it is a fast and
direct method for uncovering the principal axis of a data structure. The
efficiency of the algorithm was found to be in direct proportion to its ultimate
success in identifying a principal axis. The primary utility of this algorithm is in
determining a good one-dinensional ordering of the data rather than in
uncovering clusters or group interrelationships in the data.

® The Moment Compression Algorithm is successful at identifying clusters and
groups inherent in the data. Both it and the Bond Energy Algorithm will put a
matrix into block form, if this is possible. However, the Moment Compression
Algorithm is slower and therefore less useful for large problems, Unlike the
Bond Energy Algorithm, the Moment Compression Algorithra cannot handle
the case of block-checkerboard! matrices arising from muitilateral group
relationships. Consequently the Moment Compression Algorithm is considered
inferior to the Bond Energy Algorithm both with regard to computational
speed and versatility of ivs measure of effectiveness.

1. See Fig. 6.
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l. THE BOND ENERGY ALGORITHM

A. MOTIVATION

The motivation for the development of the Bond Energy Algorithm was to be able to
treat a broader class of problems than that normally found in cluster analysis applications. In
addition, it was desired to operate directly on and manipulate the original data without
creating or losing information. The object is not only to classify and group similar entities but
also to determine how and by what means these groups are interrelated. This can be illustrated
by considering a symmetric binary (0-1) relationship matrix between N entities. If the N
entities can be separated into, say, four unique groups (unique meaning that the entities in one
group are related only among themselves and not with any entities outside their own group),
then many of the techniques of cluster analysis are applicable. In this case it is possible to
reorder the rows and columns of the input data matrix to obtain the form given in Fig. .

- Z
> >
il eoo é
=5 =
[FE ] uz_‘
ENTITY 1
ENTITY 2
°
°
®
ENTITY NLL

11.12-4922

FIGURE 5. Relationship Matrix Showing 4 Unique Groups

However, if the entities are not completely factorable into unique groups then it is often
desirable to identify not only the principal groups but also their significant areas of relation-
ship. In other words, it might be desirable to rearrange the data matrix to obtain a checker
board pattern if it is possible. This type of pattern is shown in Fig. 6, where the off-diagenal
blocks of large Xs represent data clumps containing a sizable percentage of non-zero entries,
thus indicating partial or total intergroup relationships.

Preceding page blank 17
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FIGURE 6. Relationship Matrix with Block-Checkerboard Form

The essential question is, given a matrix whore the data are presented in an arbitrary manner,
how can the rows and columns of a matrix be simply rearranged to obtain as “clumpy” a
matrix form as possible.

B. THE MEASURE OF EFFECTIVENESS
1. Uefinition and Interpretations

In order to analytically determine the ‘‘clumpiness’ of a particular matrix, it was
necessary to develop some measure of effectiveness (ME) ! of how any subsequently proposed
algorithm would progress. This ME must be sensitive to and depend on local clumpiness while
also characterizing the clumpiness of the entire matrix. The essential idea behind the ME,
which fulfills this requirement, came from likening the situation to that of the saturation of
bonds in the nucleus o’ an atom. That is, when the nucleons are clumped together there is
total bond saturation in the interior of the nucleus while the bonds of the nucleons near the
surface are unsaturated. The intent was to find ann ME which when maximized, resulted in as
few unattached or unbonded matrix elements as possible. The bond strength between two
adjacent matrix clements is defined as the | /kth power of the product of the matrix elements.
Maximization of the ME will maximize the sum of all the bond strengths, and therefore clump
together the larger non-zero matrix elements. Another physical phenomenon that may be
likened to this situation is that of water beads on a glass. The beads tend to aggregate into

1. A more complote discusalon of MEs may be found in Appendix G.
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larger clumps in order to minimize the surface energy. The ME can be defined, then, as just the
sum of all the bond strengths in a matrix. Thus
ME = L a!¥ o
alljj ¥ *1U
where?
-1 [ 1/k 1/k 1/k 1/k
K% = 2 [“mﬂ YA Y kgt
and k is a weighting constant, which is usually set equal to 2. The ME may be interpreted
mathematically as the sum of the scalar products (or projections on one another) of all the

contiguous row vectors® plus the sum of the scalar products of all of the contiguous column
vectors.?

2. Normalization of the ME

The ME defined above can be normalized so that its value varies between O and 1. This
normalized measure of effectiveness (NME) is defined as

=1 1/k
NME, = 3
k=S > % K%

where
S is the normalization constant defined as

alij Y

S can be interpreted mathematically as the sum of the squares of the Lz norms* of all the row
and column vectors. The advantage in having a normalized ME is that it is casier to determine
how much improvement in the clumpiness of a matrix has been achieved since it is a measure

2 Agin, 3 % 40 ® a1 3 Ney 20

3. The '™ row vector is compeised of the eumalu“{k.a:z . ,;:}I:“ in the i'® row of the matrix. A column vector
is defined analogously.

4, 'l"hel.zveaummhdeﬂnedu "

2
Il = Zl Y
i=
where M is the dimousion of the vectos space. mt’wMmmakhuomlywmwmbmﬁomnwmqwhy

>
fot a notmod space 121 ¢ 1B 123 2(0.5).
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of the amount of bond saturation. For instance, if the NME of the reordered data matrix
equals 0.6, whereas the NME of the initial data matrix equals 0.2, then it can be concluded
that there does exist a good deal of inherent group structure and interrelationship that was not
initially evident. Moreover, the final N°§F gives an absolute measure of the existence of the
clusters that we have sought to uncover.

3. Advantages of the ME

The ME proposed above has some very important theoretical and computational
advantages which will be enumerated here.

®The NME can be used for matrices of any size or shape. In addition, symmetry
of the matrix is not required. The only restriction is that the matrix elements
be non-negative, real numbers,

® Since the vertical (horizontal) bonds are unaffected by interchange of the
columns (rows), the ME decomposes into two parts; one (sum of the vertical
bonds) dependent only ‘on row permutations, and the other (sum of the
horizontal bonds) dependent only on column permutations. Consequeitly
optimization of the ME can be achieved in exactly two passes, one finding the
optimal column permutation, the other finding the optimal row permutaticn.

® These two passes can be carried out completely independently of each other.
In particular, it is not necessary to alternate between row and column permu-
tations, as in the Moment Ordering Algorithm, thus eliminating the possibility
of any cycling® of the solution.

o Since the contribution to the ME from any column (or row) is only affected by
the two adjacent columns (or rows), the optimization lends itself very well to a
multistage sequential selection process.

oThe Bond Energy ME optimization does not require any prior prejudices, such
as forcing the data into clumps along the diagonal or forcing the data into
block-diagonal form. The representation of the data that is sought is a tight
clumped form and so the maximization of the ME might very well allow the
possibility of far outlying elements in order to achieve globally higher degree of
compactness. This feature is particuli rly important in the case of multilateral
relations between groups of entities where 1t is clearly not possibie to abtain s
block-diagonal form.

$. This phasomane - occurs whan the solution gets alternately better thea worie,
20
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oThe 1/k power® of 3jj appearing in the expression for the ME allows any desired
weighting of the larger matrix elements.

C. THE SOLUTION: MAXIMIZATION OF THE ME
1. The Fxact Solution

The problem to be solved as implied earlier is to maximize the ME over all row and
column permutations. That is,

Max {l T alk [al/k + allK

T8 2 i, xG),00) | x@.6G+D 7@, éG-1)

+ allk + allk
ri+1),60) 7(i-1),¢0)

where 7= {a(1), 7 (2),..., 7 (M} and ¢ = {6(1), 6D ....6MN)}

are the row and column permutations. This can be thought of physically as maximizing the
sum of all the bond energies and mathematically as maximizing the sum of all the scalar
products of contiguous row vectors and column vectors. This maximization problem can be
stated equivalently as two quadratic assignment problems (the reader is referred to Appendix
A for the detailed formalism). The first seeks a permutation of the columns of [aij] which
maximizes the row bond energy, the other seeks a permutation of the rows of (aij] which
maximizes the column bond energy. These optimizations may be viewed as two clustering
procedures, one which' rgotrders the rows on the basis of their similarity (similarity being
measured by the scalar product of the two rows), the other reordering the columns. Reas-
sembling the matrix after both clusterings produces the dense blocks shown in Fig. 6.
Although quadratic assignment problems can be solved exactly as well as approximately (for
exact and approximate methods see the references listed in Appendix A), the solution of this
problem requires a large amount of computer time in either case. Our own approximate
sequential selection algorithm has been developed which takes advantage of the nearest
neighbor properties of the measure of effectiveness.

2. Approximate Solution

a. Description of the Sequential Selection Algorithm. The suboptimal algorithm which
has been actually used to determine local optima of the ME is as follows:

6. The seasitivity of the ME to the value of & {a dtscumed in Appendix G.
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Compute and store the scalar products of each row with every other
row and each column with every other column.

Select any column to begin the selection process, Set i=1.

Next, try each of the remaining N-1 columns placed alongside the first
column and compare its contribution’ tc the horizontal bond ME.
Place alongside the first column that particular column which gives the
largest contribution to the ME.

Continue the process at the ith step by comparing the contribution to
the ME by placing each of the N-i remaining columns in each of the i+l
possible positions,® and putting the one which gives the largest con-
tribution to the ME in its proper place.

After the process is completed by placing the last remaining column in
its “best” place, then the entire procedure (items 2 through 5) is
repeated on the rows. It is, however, not necessary to repeat the
procedure on the rows if the initial input matrix is symmetric since the
final resulting row order will be identical with the column ordering,
yielding a symmetric matrix.

b. Advantages of the Algorithm. The algorithm described above has several attractive
advantages which are noted here.

M

(2

3)

4

(5)

(5)

&)

Since the algorithm is finite and non-iterative, there are no convergence
problems.

The algorithia will always reduce a matrix to pure block form if it is
possible to obtain this form by row and column permutations (see
Appeadix B for proof).

The solution obtained from the algorithm is independent of the input
order of the rows (or columns) but is only dependent on the injtial row
(or column) chosen to start the sequential selection process.

The results of the algorithm are very insensitive to the slariing point
(i.e., starting rcw or column), hence any solution is & “good" one (see
Table 2).

The computation time for the algorithin depends only on the size of
the matrix ana not on its clements.

The algorithm uscs no thresholds or filtering during its operation which
can alter its course and affect the final result.

Only the raw input data matrix is used to determine the new row and
columin orderings.

7. The conunbution is just the dot product of the chosen column vester with the first column vector,
8. The i+] positions sz¢ to the loft and right of the | columss already placed.
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3. AnExample

A simple example taken from Principles of Numerical Taxonomy (Ref. 15) will
illustrate how the algorithm can identify the clusters and their interrelationships. The
similarity matrix of Fig. 7 is given where a numerical value of 5 in element i,j indicates a high
degree of similarity between entity i and entity j, and 0 indicates no similarity.

A B CDEF GH I
AlS 4 1 0 4 1 1 0 3 1
B(4 5 0 1 3 1 1 0 4 1
civ 05 01 3 3 0 1 2
Di|0O 1 0 5§ 0 0 0 4 0 1
E|4 3 1 0 5 1 0 0 4 1
Fiy1 v 3 0 1 5 3 0 1 3
Gi1t 1 3 0 0 3 5 0 1 2
HI0O 0 0 4 0 0 0 5 1 0
I 13 4 1 0 4 1 1 1 5 1
JJfv v 2 1 1 3 2 0 1 5
11-12-49-9 :

FIGURE 7. Initial Non=Binary Similarity Matrix
By applying the algorithm described above, a new axis ordering and a new matrix arc obtained
and are shown in Fig, 8.

H DB ATE I J F GC
Hi5 4/0 0 0 1V 0 0 0 O
D4 _S5]1 0 0 0 1 0 0 O
B0 (5 4 3 41 1 1 0
A0 04 5 4 311 1 1 1
E[O0O O}]3 4 5 411 1 0 1
F{ft 0[4 3 4 511 1 1 1
JJJ1o v v v 1 1]5 3 2 2
Fi¢ o 1 1 v 1|3 5 3 3
Gjo 0 v ¥+ 0 142 3 5 3
ci!o 00 1 1 142 3 3 5
Fhe12-49-10

FIGURE 8. Reordered Non=Binary Similarity Matrix

It is easy to identify three major diagonal blocks of large numbers representing three clusters
or groups of entities. H and D constitute the first group, B, A, E and I the second group, and J,
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F, G and C the third group. From the grouping of the smaller off-diagonal elements it is
evident that there is some weak relationship between the second and third groups but
essentially no relationship between the first group and either of the other two. It is also quite
apparent from this example that this new form for the matrix data conveys more information
concerning the group structure and relationships tha. does the origina: matrix form.

D. OPERATION OF THE ALGORITHM
1. Computing Time Requirements

If the original data matrix is of dimension M by N, then the total number of arithmetic
operations necessary to perform all the initial row and column dot products is just:

M-1 N-1

Operations = N X i + M Y i o
i=1 i

Operations = N'-E(Mz'_llﬁ»mﬂ‘iﬂiz;ll or

for large M and N,

2 2
Operations =~ w .

At step i of the algorithm, it is necessary to compare the contribution of the ME of all the
remaining N-i unplaced columns in the i+1 possible positions, thus the total number of column
comparisons equals

N-1 N-1
Y G+DMN-D= & iN-i2 + N-i
i=1 i=1

3

= _Ig_ for large N.

Similarly it requires approximately M3/6 comparisons for the rows. Thus for a square matrix,
the computation time of the algorithm goes as N3. This theoretical variation in the computing
time has been borne out experimentally as can be seen in Table 1. The computirg time® in
seconds is given for various size problems (times given are for a single starting point).

9. On CDC 1604 computar using Uaivzusity of Minnesota compiles.
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Table 1. BOND ENERGY ALGORITHM COMPUTATION TIME

N M Time
2 21 11 sec
29 29 23 sec
48 48 124 sec

From this data a scaling law can be derived which gives the required computation time
in seconds for a given size square matrix, for a single starting point.

TR

el S

Computation Time (sec)= 0.0012 N3

2. Ties

It occasionally happens that ties occur during the course of the sequential selection
algorithm. Ties between rows and columns <an occur in the following ways:

n Tic arising from putting the same as yet unplaced column (or row) in
two or more possible positions.

(2) Tic arising from putting different as yet unplaced columns (or rows) in
the same positions.

= 3) Ties arising from putting different as yet unplaced columns (or rows) in

3 different possible positions.

We have no present criterion for deciding how to break ties arising from condition (1), nor is it
known whether there is reason to sclect one alternative over the others. Ties arising from
conditions (2) and (3) are broken by selecting the unplaced row or column which has the
shortest length in the Ly norm.!® Thinking in terms of the ME mathematically, if we can
obtain the same scalar products or projections witi two vectors, then the shorter should be
used rather than the larger one. This tie-breaking mechanism has been found to work
o satisfactorily in that it leads to informative final data srrangements.

3. Effect of Starting Point

Although the results of the algorithm do nov depend on the order in which the rows
and columns are considered, there is a difference in the final results depending on which row
or column is selected to start the multistage decision process. In the example presented in Figs.
7 and 8, the problem was started 10 times, beginning once with cach column, Tablo 2 gives the
frequency of occurrence and final ME for each distinct solution.

10. This bs just the square root of the sum of the wuares of 2l the clements of the vector.

RN




Table 2. FREQUENCY DISTRIBUTION OF ME

Solution No. Frequency ME
1 3 419
2 3 419
3 | 414
4 2 414
5 1 412

Several significant facts may be noted from these results. First of all, the solutions with the
highest ME, 419, which are believed to be the globally optimum solutions, occur 60 percent of
the time. The difference between the best and worst solution is only 7 out of over 400, or less
than 2 percent. A noteworthy point here is that the final “solution™ (ME) depends very
weakly on the starting point and even the worst *“‘solution” is not very far from the optimal
sofution. With regard to the final group structure, it has been found that the various near
optimal so'utions do not differ significantly from the optimal solution. The various solutions
are due to the rearrangement of the entities within a cluster group and the reordering of the
groups themselves. These results have been confirmed by experimentation on significantly
larger matrices.

4. Formatting Data

The input format for the data can be in any matrix form. This means that the Bond
Energy Algorithm permits analysis of the raw data without forming a similarity matrix.!! For
example, suppose we have an object-attribute matrix and we desire to find out which objects
are similar. The advantage of performing the grouping directly upon the object-attribute
matrix, rather than upon the similarity matrix, is that it is now possible to determine which
attributes characterize a particular group of objects (see example 4).

E. APPLICATIONS

Several applications of this method have already been attempted and others have been
suggested. It appears that the algorithm is applicable to a wide class of problems, a number of

waich will be enumerated here.

(1) ldentification of natural groups and subgroups within data.

(2) Identification of relationships and dependencies between groups.

(3)  Relationships of groups of attributes to groups of objects.

(4)  Examining influence relationships and structures via nonsymmetrical
data matrices.

11, A similarity matrix ia o symmetric eatrix mu‘"‘ clement ls a measuze of the similarity of eatity i to entity |.
Applying the Bond Eneegy Algotithm (o o wmilirity mauix identifies (as the dlagonal Blocks) the main goupings of

catities and (33 the off-diagonal clumps) the {atergroup relationships.
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(5)  Analysis of hierarchical clustering and grouping via quantified numeri-
cal relationships.
6) Factoring of large linear assignment problems (Ref. 32).
@)) Factoring of large management problems to identify optimal subtasks.
8 Clustering of correlation matrices.
(9)  Solution of traveling salesman problems (Ref. 31).
(10)  Unscrambling flow graphs and network relationships.

F. EXAMPLES

A number of examples are presented in the following paragraphs to illustratc the
operation and the potential application of the Bond Energy Algorithm. It should be clearly
understood that the algorithm operates on matrices that contain “*hard” numerical entries and
therefore considers each data matrix to be an exact representation of the relationships
involved. We feel, nevertheless, that the algorithm has application for problems involving
“soft” data (Airport example) as well as *‘hard” data (Hindi consonant example), as long as
proper care is taken to judiciously weigh the results subject to the degree of validity of the
input information.

1. Example 1

Bonner (Ref. 3) has presented scveral clustering techniques which uncover group
structure in matrix data. For this example, the Bond Energy Algorithm is applied in several
different ways to illustrate its advantages and directness for gathering similar data into clusters.
The objects which will be clustered arc defined by a set of attributes which characterize them.

Bonner presents a binary description of an object set as an object-attribute matrix

-—
~N
(8]
F-
W

OBJECT NUMBER

O NOO &N~
—_ OO~ OO — —
—_—_ 00—~ -0
- D) et D e e OO
O = O et O amt e
OO =~ =0 —~0C
O =00 ~—~00 |

Vheided®- 0

FIGURE 9. Initial Binary Object-Attribute Matrix

hy)

R T




G
Pii'-' Cii"'ij-Cﬁ

He then proceeds to form a similarity matrix P, where the Pﬁ are defined as

1 point for several clustering techniques.

OBJECT NUMBER

1 2 3 4 5 & 7 8

1y 23 /5 0 2/3 0 1/4 1/4

2 1 /6 \/5 2/4 0 2/4 2/4

1 3 1 2/5 2/5 254 2;5 156

4 10 /4 2/4 2/4

3} ER

OBJECT NUMB 5 1 /4 /6 /5

i 3 1 0 1/4
7 1 /5
8 ]

OBJECT NUMBER

e R S LR BT DA N

\ and Cij is the number of attributes which are *“one” for both object i and object j. The
' similarity matrix corresponding to Fig. 9 is shown in Fig. 10, A threshold T=0.45 is then used
to convert the fractional similarity matrix of Fig. 10 to a binary similarity matrix by setting
those matrix elements to one whose values are greater than 0.45 and the rest equal to zero.
This similarity matrix is shown in Fig. 11, Bonner then use's this similarity matrix as a starting

FIGURE 10, Initial Fractional Object Similarity Matrix

1 2 3 4 5 6 7 8
1/1 v 00 1V 0 0 O
2(1 1 0 0 1 0 1 1
3/0 010 0 100
OCBJECT NUMBER 410 0 0 1 0 0 1 1
5/ 10 01 0 0O
6{0 01 0 0 1 0 O
70 1 01 0 0 VY O
8{0 1 0 1 0 0 0 1

Meidae N

FIGURE Il Initial Binary Similarity Matrix

The Bond Energy Algorithm has several advantagss over Bonner's technique. First, it is
able to operate directly on the object-attribute matrix without forming a similarity matrix thus
permitting it to identify those particular attributes that charactetize objects in the same
cluster. Second, the application of the algorithm will ncver result in a loss of information since
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the data are only rearranged. Finally, even using a similarity matri» the algorithm can produce
a reordering which not only displays the clusters but also their strengths and relationships.
These advantages will be demonstrated by successive application of the Bond Energy Algo-
rithm to the matrices of Figs. 9, 10 and 11.

When the object-attribute matrix of Fig. 9 is rearranged by the Bond Energy
Algorithm, the new data matrix of Fig. 12 is obtained. When rectangles are constructed around
solid blocks of 1s in two or more rows and columns, it can be seen that the objects fall into 4
*core” clusters: 3,6 and 2,1,5, and 4,7, and 8. It is also observed that attributes 3 and § are the
essential characterizing attributes of the 3.6 object cluster, attributes 4 and | arc the
characterizing ones for the cluster containing objects 2,1 and 5, and attributes 2 and 6
characterize the cluster containing objects 4 and 7.

ATTRIBUTE NUMBER

4 1 2 6 3 5

g|0 1 1 0 1 O

40 O] 11 O

7{1 0y 1j0 O

OBJECT NUMBER 2 ||1 1|1 0 0 O
1 (v {0 0 0 O

5¢p_1j0 0 0 1

3|1V 0 0 11U

6l0 0 0 O1 1

11=12-49-14
FIGURE 12, Reordered Binary Object-Attribute Matrix

When the Bond Energy Algorithm is applied to the fractional object similarity matrix
of Fig. 10, a new ordering is obtained. In this new ordering in Fig. 13,

OBJECT NUMBER
6 3 5 1 2 7 4 8

6/l vV 2/4
324 )
5 } 2/3 2;;
] 23 1 2
OBJECT NUMBER , 2/4 231 |2/ oY)
7 2/41 1 [2/4
4 2/41 1 2/4
8 2/4 2/4 1

FIGURE |13. Reordered Fractional Object Similarity Matrix
29
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only the larger elements (i.e., 1/2 or greater) are shown so that the clusters can be more easily
identified. Again, it is possible to identify the clusters and how they interrelate. Objects 3 and
6 form a very tight independent cluster. Objects 5,1,2 form another tight cluster, although
there is a non-trivial relationship between object 2 and objects 7 and 8. Objects 4 and 7 form
another cluster that is somewha: related to objects 2 and 8. Thus, visually, this form of data
presentation is helpful and its computational requirements are very small (less than one
second).

When the Bond Energy Algorithm is applied to the binary similarity matrix of Fig. 11,
the result is given in Fig. 14. It is quite apparent that these results illustrate the same
relationships and clusters as those shown in Fig. 13, but are inferior since the strengths of the
relationships are not shown. This illustrates that while Bonner’s filtering technique leads to the
uncovering of major clusters, it also loses information present in the original data matrix.

OBJECT NUMBER

6 1

<w
w
[N ]
~
F-N
w®

OBJECT NUMBER

©ANNDOL —O W
X -X-N-N-X-] -
OO O |~ —
oo o—-——locoo
oo ol~——loo
—lo|=|=]— =|lo o
ojl~|=|=looco o o
—l=l=-loocooc oo
—-—-ot—-_oooo

Lhe12+69-17

FIGURE 14, Reordered Binary Similarity Matrix

2. Marketing Techniques and Applications

In displaying the data relationships in this example, it is found that the application of
the Bond Energy Algorithm reveals several latent group associations and significantly enhances
the quality of the presentation of the data.

Figure 15 contains a matrix showing which Marketing Techniques are used for
particular Marketing Applications.!? By application of the algorithm it is possible to reorder
or relist the marketing applications on the one axis and the marketing techniques on tiie other

12. The data for ihis sxample were taken from the September-Octobar 1969 issuo of the Harvard Business Review
from “Tochniques in Marketing Research™ by J.F. Dash and C. Barenson.
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ADVER-
TISING
RESEARCH

ACQUI-
SITION
SCREENING

BRAND
STRATEGY

CUSTOMER
SEGMEN-
TATION

CUSTOMER
SERVICE

DISTRI-
SUTION
PLANNING

MARKET
SEGMEN-
TATION

PRICING
STRATEGY

PRODUCT
LIFE-CYCLE
ANALYS!S

PRODUCT
LINE
ANALYSIS

REGRESSION & CORRELATION
ANALYSIS

X

X

X

X

DISCOUNTED CASH
FLOW (DCF)

INCREMENTAL
ANALYSIS

MULTIPLE REGRESSION/
CORRELATION

RANDOM
SAMPLING

SAMPLING
THEORY

BAYESIAN
APPROACH

COST-8ENEFIT
ANALYS(S

CRITICAL PATH
METHOD (CPM)

DECISION
TREES

DYNAMIC
PROGRAMMING

EXPONENTIAL
SMOOTHING

INDUSTRIAL
DYNAMICS

INPUT-QUTPUT
ANALYEIS

LINEAR
PROGRAMMING

MARKOV
PROCESS

MONTE CARLO
$IMULATION

NONLINEAR
PROGRAMMING

NUMERICAL
TAXONOMY

PERT

QUEVEING
MODELS

kiSK
ANALYSIS

SENSITIVITY
ANALYSIS

»

TECHNCOLOGICAL
FORECASTING

1ieedy
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DISTRI- MARKET PRODUCT | PRODUCT | PRODUCT R&D ROI SALES TEST VENTURE
MW CUSTOMER | BUTION | SEGMEN- | PRICING [LIFE-CYCLE LINE PLAN- FLAN- ANAL- FORE~ MARKET- PLAN-
ON SERVICE | PLANNING| TATION | STRATEGY | ANALYSIS | ANALYSIS NING NING YSIS CASTING ING NING

‘ X X X

FIGURE 15. Initial Matrix of Marketing Techniques and
Applications
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CUSTOMER

SEGMEN-
TATION
MARKOV X
PROCESSES
NUMERICAL X
TAXONOMY

REGRESSION & CORRELATION
ANALYSIS

MULTIPLE REGRESSION/
CORRELATION

SAMPLING
THZORY

EXPONENTIAL
SMOOTHING

INPUT-QUTPUT
ANALYSIS

TECHNOLOGICAL
FORECASTING

CRITICAL PATH
METHOD (CPM)

PERT

MONTE CARLO
SIMULATION

DISCOUNTED CASH
FLOW (DCF)

DYNAMIC
PROGRAMMING

COST-BENEFIT
ANALYSIS

BAYESIAN
APPROACH

DECISION
TREES

RISK
ANALYSIS

SENSITIVITY
ANALYSIS

INCREMENTAL
ANALYSIS

tNDUSTRIAL
DYNAMICS

QUEVEING
MODELS

LINEAR
PROGRAMMING

NONLINEAR
PROGRAMMING

RANDOM
SAMMLING
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CUSTOMER | MARKET SALES ADVER- ACQUI- | PRODUCT | VENTURE R&D 2
SEGMEN- | SEGMEN- FORE- BRAND TISING PRICING SITION LINE FLAN- PLAN-
TATION TATION |, CASTING | STRATEGY | PESEARCH | STRATEGY | SCREENING| ANALYSIS NING NING »

MARKOV
PROCESSES X X

NUMERICAL « X
i AXONOMY

REGRESSION & CORRELATION
ANALYSIS X M X & X

MULTIPLE REGRESSION/
CORRELATION

SAMPLING
THEORY

EXPONENTIAL X
SMOOTHING

INPUT-OUTPUT " X
ANALYSIS

TECHNOLOGICAL X ¥
FORECASTING

CRITICAL PATH X X
METHOD (CPM)
PERT : X X X3

MONTE CARLC
SIMULATION

DISCOUNTED CASH
FLOW (DCF)

DYMNAMIC .
PROGRAMMING X X X 5

COST-BENEFIT X
ANALYSIS

BAYESIAN
APPROACH

DECISION
TREES

RiSK
ANALYSIS

SENSITIVITY
ANALYSIS

" TINCREMENTAL
& ANALYSIS X X X
E TINDUSTRIAL X
= DYNAMICS 3
QUEUEING E
MOUDELS

LINEAR X
PROGRAMMING

NONLINEAR
PROGRAMMING

T RANDOM

B SAMPLING

TN

40 adiy
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FIGURE 16,
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FIGURE 16, Reordered Matrix of Marketing Techniques
and Applications
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axis, while preserving all the data relationships contained in the original matrix. Fig. 16
contains the reordered matrix produced by the Bond Energy Algorithm. With the data in this
new matrix form, it is now possible to identify three major clusters or clumps of data. It is
belicved that in this new form it is possible to uncover useful information that was not obvious
from the original matrix.

First, the algorithm groups marketing analysis techniques that are used for the same
applications and also it groups marketing applications that utilize the same marketing tech-
niques. This has the effect of putting similar marketing techniques near one another on the
vertical axis and putting similar applications together on the horizontal axis. It is postulated
that the clumps provide, for one thing, a basis for efficient assignment of responsibilities to
analysts and their supervisors, and for another, by exception, a basis for deciding upon the
relative merits of “techniques” specialists and *“‘applications’ specialists.

Second, if it is possible to factor a matrix completely so that it is apparent that there is
a unique relationship between a certain group of marketing techniques and a certain group of
marketing applications, then the algorithm will accomplish this. In this example, this has been
partially done by identifying three more or less independent clumps in Fig. 16. In particular, as
was noted by the authors, PERT and CPM are similar in concept and hence they occur
together in the same clump. Alto, as noted in the article, risk analysis is often used in
conjunction with the method of decision trecs. Here again, these marketing techniques are
contiguous in the new ordering. On the other axis it is found that similar “marketing
applications” are grouped together. For example, Product planning, R&D planning. Venture
planning and Productline analysis all involve planning of som¢ sort and occur in the same
clump because they utilize common “‘marketing techniques™ for planning, such as PERT, CPM,
etc.

Another possible way in which the clumped matrix of Fig. 16 can be useful is to
suggest possible unexploited application of techniques to marketing applications to which they
have not aiready been applied. These could be identified by looking for conspicuous holes
within the clumps or omissions on the borders of the clumps.

Thus, it appears in this example, that with proper arrangement of binary (yes-no) or
quantified data given in matrix representation, that the amount of information conveyed can
be significantly enhanced to such an extent that it is undesirable to present it in other than
clustered form.

Preceding page hlank
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3. Coordinating Airport Design' 3

A practical way to design an airport is to factor the problem into a number of smaller
pieces. If the subproblems can be solved separately and then adjusted so as to remain valid in
the context of the original problem, then the task is completed. It is, however, necessary to
determine the best way to factor the big problem into more manageable pieces.

A numerical example will illustrate the applicability of the Bond Energy Algorithm to
the problem. The objective is to exploit the structure of an airport problem in such a way as to
identify two things:

oThe “naturai’™ subproblems
o The necessary coordination between subproblems.

The ultimate accomplishment would be to factor the problem into small, completely
independent subproblems. But given that complete independence is impossible, the next best
thing is to minimize the intergroup dependencies by identifving the optimal way to subdivide
the problem.

The first step is to describe the airport problem in terms of a set of variables and their
interrelations. A partial list of exogenous and control variables is shown in Table 3.

The exogenous variabics describe those factors mostly dictated by the environment
while the control variables apply to those factors primarily under control of an airport planner.
Let X; be the ith exogenous variable and let D; be the ith control variable. The X;'s may be
thought of as input data and Dy’s as the design decisions. Given a set of values for the X;'s, it is
assumed that there exists some way of measuring the performance of an airport design based
on some criteria. The details of the performance function are not needed: just a few basic
characteristics. Let P be the measure of performance and let F be the function that measures
performance. Clearly, P is a function of the D;’s, hence

P=F (Dl. Dz. . [)27)-

F will, in general, depend on the X;s: however, the discussion will be limited to a specific set
of values for the X;'s. The design problem involves selecting values for the Dy's that maximize

13. The analysis and he dat for this application are due to Me. T.W. White of the Institute foz Defense Analyses,
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Table 3. AIRPORT VARIABLES

Exogenous Variables

OO0 N by —

——
- -

_.._.....
bl

16.
17.
18.
19,
20.

21

Total air travel demand

Originating passengers

Transferring passengers

Terminating passengers

Greeters and well-wishers

Access ground transportation mode for passengers
Egress ground transportation mode for passengers
Airport employees

Taxis and cars that do not park

Cars whose drivers park and fly

Rental cars going to the airport

Rental cars driven from the airport

Bus and limousine

Employee access transportation mode

Passenger trip duration

Aircraft turn around time on apron

Mix of aircraft by cupacity

Gate schedule: aircraft arrivals and departures
Origin/destination pattern for baggage at airport
Air cargo demaad

Runway demand

Control Variables

TO PN A Wy —
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i atad
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<

14
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-

P

4

(274
&

-

Passenger check-in

Baggage check-in

Baggage claim

Baggage moving system
Intra-airport transportation system
Cargo terminal

Close-in parking lots

Remote parking lots

Main access roads to and from airport
Circulation roads within airport
Service area for rental cars

Parking lots for rental cars

Curb space for unloading

Curb space for loading

Waiting areas at gates

Stations for intra-a.cport transportation system
Airerafl Joading system
Consessions

Renial car desk

Runway capacity

Number of gates

Passenger information

Cargo transfer

Air traffic contrel system

Refuse removal

Flight operations and erew facilitics
Alrcraft service on the apron



P. The problem can b simplified, for example, if the function F “factors” into two parts; that
is, if there are two functions F, and Fy, and if the D;’s can be split into two groups such that

F (Dl 3o ooy D27) = Fa(A) + Fb(B)

where A and B are groups of D;’s such that no D; is common to both A and B. A and B
represent subproblems that can be solved separately. The general goal is to break the function
into as many “factors” as possible such that there is no, or very little, interaction between

factors.

The next step is to determine the interaction between all pairs of control variables, D;
and Dj, for example. Does the behavior of D; with respect to the performance function F
depend on Dj? Let R(i,j) be the answer where R(i.j) may take on one of four values as follows:

= no obvious dependency
= weak dependency
moderate dependency
= strong dependency.

W oo - O
|

Based on White’s subjective judgment, values for R(i,j) were generated and appear in Fig. 17. It
is assumed that R(i N R(j,i)‘ Note that the ordering of the items in the matrix produced very
scattered data. The eye is not able to identify any striking organizational structure.

The Bond Energy Algorithm was applied using the original matrix as a starting point
with the objective of rearranging the rows and columns of the matrix to obtain a better order.
The algorithm tends to push the larger numbers together into clumps and favors large clumps
over smaller ones. There is no preferential orientation of the final clumps; however, the
symmetry of the original matrix about its diagonal results in a symmetrical final arrangement.
The improved ordering is shown in Fig. 18, (The algorithm applied to the original matrix
required about 2 minutes of CDC 1604 computer time for a number of starting points.)

After studying the matrix in Fig. 18, it appearcd that there were eight clumps of
numbers as indicated in the figure. The clumps contain all of the strong dependencies (the 3s)

and all but six of the moderate dependencies (the 2s).

The interpretation of Fig. 18 is that clumps along the diagonal correspond to natural
divisions of the big problem into subtasks. The off-diagonal clements not included in any
clump correspond to coordination links. Figure 19 illustrates this interpretation. The items are
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listed along the left of Fig. 19 in the order found on the *“‘clumped” matrix (Fig. 18). As a first
approximation (shown below), the performance function can be split into eight factors
corresponding to the eight subproblems shown in Fig. 19.

P = Fa (D18’ Dzs, D27)

Fp (D27, D73, Dg, D7)
F; (D15 Dys Dy Ds)

Fgq (Bs, Dg, Dg, Dy, D7)
Fe (D13, D92, D1, D3, Dy)
Fs (D4, D3, Dyyg)

Fg (D12, By

Fp ‘D20 D2g» Dg)

+ 4+ + 4+ + + o+

Except for D7 (aircraft service on apron) and Ds (intra-airport transportation system), the
eight components in the above approximation form independent subproblems. The six coordi-
nation linls shown in Fig. 19 could form the basis of six “correction factors” which would
improve the approximation. The correction factors would be of the form A, (Dg, Dg), Ay
(D19, D13), 8. (Dyg D1g), 84 (D16 D22), B¢ (Ds, Dy), and A (Dyg, Dyy).

4. Ordering of Error Matrices in the Analysis of Perception of Cousonants

In this example, the Bond Energy Algorithm is used to rcorder an error matrix
obtained from an expsriment testing the perception of consonants. The matrix under consider-
ation is a square matrix with the 29 consonants lying on the vertical and horizontal axes. These
data were taken from an article by Ahmed and Agrawal (Ref. 29) in the Journal of the
Acoustical Society. In the experiment cach consonant was enunciated in the intial position of
540 nonscnse syllables. The a.f clement of the matrix contained the number of times
consonant § was heard when consonant a was spoken. It is clear than since the correct
conscnants are heard most often, the diagonal elements of the matrix will be largest. For this
example, the square roots ' “of the elements were used rather than the eiements themselves,
and all the elements whose values are less than two are deleted.! S The error matrix was input
in a random manner and the best ordering of the reordered error matrix is shown in Fig. 20.
The square blocks lying along the principal diagonal of the matrix indicate that the consonants
have been clustered into 7 groups. These clusters represeat those groups of consonants that
were most often confused with one another during the experitient. The off-diagonal non-zero

14. In this cxample the weighting k=2 i3 again used to preserve scale.
15, The umall clements are deleted so that the pattesns formed by the lasger alements may be visually identifled mors
eatily,
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entries reprasent consonants in one group being mistaken for consonants outside their group.
Note, for example, that one cluster contains the consonants dh, d, .d, and b which occur
together because they sound so much alike and hence were often mistaken for one another
during the experiment.

This example again illustrates how this method of direct analysis can be a significant
aid in determining inherent group structure contained in data matrices.

FIGURE 20. Reordered ( HINDI) Consonant Error Matrix

Tf d3<!3ht]h f s kh bh gh ph rh.th.dh dh d.d bw ro t pg ka jmoa |
Tr{23
hi3| 23
9 2[23 3
tf 2 23
f 23 5
;\ 4 3
hk 23 2 2 3
b h 3 23 2 3
9 222 4 ‘2 3 2
P 2 425 3
" 2 3 2
Y 2 3120 22
.d 2 2 321 9 3
&I 2 2 anl2
d 7123 4 2
.d 523 2 2
b 2 3 23(3
w 2 5
r 323
t 2 22 6
N 528 2
4 0
p
9 23
k 4 23
h k] p) 23
i 23
™ 2 23 3
n 4 2
| 3n
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5. Inter-City Distances

In this example, the Bond Energy Algorithm is applied to a geographical problem to
determine if it can satisfactorily cluster or clump together neighboring citizs when a large
number of inter-city distances are given as input data. Since the algorithm clusters large
elements of a matrix, it was decided that the square root!¢ of inverse distance would be used
for the matrix elements. In particular, the elements of the matrix al/ kij are given by the

expression, (withk = 2)
12 _ 100 .
ay = / i i# j,and

12, =
all/Z;= 20 alli =j

where dij is the distance between city i and city j in hundreds of miles and the resulting matrix
elements are rounded to the nearest integer. This input matrix is given in Fig. 21, where, for
visual clarity, all the elements with values less than 7 have been deleted. It should be
remembered from the definition that the larger the matrix element, the closer are the two
cities i and j.

The matrix given in Fig. 22 is the reordered inverse distance matrix following operation
by the algorithm on the input matrix, Elements whose values are less than 7 have again been
deleted.

A number of clusters may easily be determined by identifying the square blocks of
data that occur along the main diagonal of Fig. 22. The first two cities, Helena, Montana, and
Bismark, North Dakota, are wcll isolated and constitute two separate clusters themselves. The
next two cities, Denver, Colorado, and Cheyenne, Wyoming, are quite close and constitute a
cluster. The next three cities, Des Moines, lowa; Dubuque, lowa; and Chicago, Illinois, are
contained in the next cluster, and so forth. The one anomaly that does exist is the occurrence
of the rectangular off-diagonal block of 7s. This indicates that although Chicago, Detroit, and
Ft. Wayne are geographically near cach other and are therefore in the same cluster, that
Detroit and Ft. Wayne arc also near some citics in another cluster, i.e., Cleveland, Akron,
Columbus, and Cincinnati.

All these clusters may be verified geographically by referring to the map of the United
States given in Fig. 23. The cities under consideration are denoted by darkened squares and the
clusters are shown by the cities contained within each closed line.

16, The sguare 1001 was usad to preserve scale and keep the matrix eloments less than oi equal to 20.
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FIGURE 21, Initial Inter=City Inverse
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The conclusion that can be drawn from this example is that the Bond Energy
g Algorithm can indeed rearrange data geographically when it is presented in another order
(alphabetically).
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il. THE MOMENT ORDERING ALGORITHM
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A. INTRODUCTION

The purpose of the Moment Ordering Algorithm is to use the information contained in
y an array of data to find a one-dimensional ordering of the row (and columnas) of the array.
. This one-dimensional ordering will represent the ranking of the rows (and columns) under the
: relationship which the algorithm finds to be the most important in analyzing the array. The
‘ algorithm therefore provides a method of extracting, from the complex interrelationships
g which may be expressed in the array. a single important relationship. and of organizing the
rows and coluinns according to this relationship. For example. one of the problems discussed
below involves an array describing the voting pattern of Scnators. The algorithm in this case

tukes the array, originally in the arbitrary form of an alphabetical listing of Senators and a
chronological listing of votes. and produces an ordering of the Senators, und of the bills voted

o

upon, based soiely upen the origina! array, which represents a kit sral/conservative ordering. A
3 sccond cxample involves an array consisting of archeological sites as the columns, and of
pottery types ¢s the rows, with the entries being the concentration of a pottery type in a site. :
The algorithm in this case privides a reordering which puts the pottery types, and the sites. in a
choronoiogical order, based upon the fact that the most important fuctor in determining the
: types of pottery found at these sites was the age of the site.

‘13 B. THE ALGORITHM

1. Motivation

S L

R SRLRL:

A

The definition of the algorithm is based upon the fact that if two rows are similar to
each other, their mean row moments should be close to each other in value. The mean row

moment x; of row i Is defined as

N
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where 8 is the ijth entry in the array. This is merely another way of stating that rows are
similar if their large entries occur in the same columns, or in columns close to each other.
Similarly, if two columns are closely related, their mean column moments, defined as

ME
ia
=Y
¥j < M

3

should be close to each other in value.

Based upon these observations, then, it is desirable to arrange an array so that its rows
are in order of the values of their row moments, while at the same time its columns are in
order of the values of the column moments. This state will correspond to a one-dimensional
ranking of both the rows and the columns according to the same underlying variable. The
algorithm provides a method of finding such states, and hence of ordering arrays of data.

2. Definition

The algorithm, beginning with an arbitrary arrangement of an array, proceeds in the
following way to find a state with the property described above, of having both the rows and
the cotumns of the array arranged in order of their moments:

The row moments are calculated for the original arrangement of the array, and
the rows are reordered to put them in order of their moments.

The column moments are calculated, and the columns reordered according to
their moments.

Because the reordering of the columns changes the values of the row moments,
the rows will no longer necessarily be in order of their row moments. The row
moments are therefore recalculated for the new arrangement of the columns,
and the rows reordercd according to these new moments.

The procedure is continued, alternately reordering the rows and columns, until
a state is found in which both are simultaneously in order of their moments.
This state, then, is the desired ordering of the rows and columns, and is a
solution of the algorithm.
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3 i The algorithm is therefore entirely an iterative procedure. The progress of the algo-
rithm toward convergence, however, is marked by an increasing concentration of the larger
elements on or near the main diagonal.?

—
SR

The progress of the algorithm is illustrated, for a 4x4 array, in Fig. 24. The initial state
of the array is a; the values of the row moments for that array arrangement are also shown.
The algorithm then proceeds through states b, ¢, and d, by reordering the rows and columns
alternately. When state ¢ is reached, it is found that the rows are already in the proper order
and do not need to be reordered. This marks that state as a solution.

e BT S e A N S A TN

The concentration of the larger elements on or near the inain diagonal in the solution is
pointed out in Fig. 24 by circling, in the initial and final states, the tour largest elements. They
A are scattered in the initial state but in the solution three arc on thc main diagonal and one is
just off it.

The following subsections present further details concerning the use of the algorithm,
Section C presents several specific problems which have been investigated by use of the
algorithm, and illustrates the utility of the orderings produced by the algorithm.

3. Stable States and Multiple Solutions

The algorithm as defined above takes an arbitrary initial ordering of an array and finds
a stable scorderine, Tt has been found, however, that if different initial orderings of the same
array are used, different solutions may be found. For ¢xample, Fig. 25 shows two ditferent
solutions which can be found for a simple 3x3 array.?

When the algorithm is run many times on larger arrays, using different starting
orderings each time, it has been found that those solutions which occur most frequently
always are amongst the most diagonal arrangements of the array.’ Conversely, any solutions
which are very nondiagonal occur only rarely.

This obsesvation has been used as the basis of a technique for obtaining a final ordering
of the rows and columns which best utilizes the additional information found in the multiple
solutions,

iy

.‘
N 1. Appendix H discusses a meawse of effectivencss which has been detlned to measure this progress toward
i dusgonality, llowever, because unlike the Bond Ensrgy Algosithm this algorithen was not developed 1o mavimize this quuntity,
b the meawre of effectiveness defined bas been found to be of only maiginal vic.
E 2. Appendin b describes an mvestigation which was made, fot a In3 areay, of the properties which lead to the existence
3 of thess multiple sotutions. .

- 3. As measuted by the correlation coaiflcient messure of sifectivenes defined in Appondia H,
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(INITIAL STATE)

ROW
o B Y & MOMENTS
A 3 4 5 73
B 4 5 2 2,05
@ ¢ | Y 3 2.86
6| DE® 2 5 2.25 -
| !
REORDER ROWS
! o
y B v & 4
B 8 4 5 2
D 7 é 2 5 -
b Al 3 3 4 3 3
cl 2 1 8 3
NEW COLUMN ] 1.95 2.07 2.79 2.60 -
MOMENTS | ;
REORDER*COLUMNS -
: NEW ROW -
v B 8 Y MOMENTS ¢
’ ’ wiy
B 8 4 2 5 220
D | 7 6 5 2 2.10 -
€ Al 3 35 & 26 J‘
C 2 1 3 8 3.z
REORDER ROWS l
' ¥
. B 8 ¥ ,
D 7 6 5 2 1
B 8 4 2 5
(&) A} 3 3 5 4
C 2 1 3 8
NEW COLUMN| 2.00 1.93 2.40 2.95 I
MOMENTS |
REOKDER COLUMNS l
NEW ROW
! B« & Y MOMENTS
p !l ®@ 5 2 215 I
(e) 8 ‘ 4 6 2 5 2,42
Al 3 5 4 2.67
C ! ! 2 3 3.29
NO REORDERING OF i
ROWS NECESSARY
{SOLUTION) l
FIGURE 24. Operation of the Algorithm on a Small Array
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SOLUTION 1 SOLUTION 2

| a B8 v | a v B
Al7 2 1 Al7 1 2
B3 5§ 2 Ccl3 7 0
c{3 0 7 B3 2 5
11-13-49-3

FIGURE 25, lllustration of Multiple Solutions

The algorithm is run a “large” (25 or 50 has been found satisfactory) number of times,
each time starting from a different randomy ordering of the.rows or columns, and the order of
the rows and columns found each time is saved.* The average of the position taken by each
row (and column) in the solutions is found. (Solutions found more than once are entered once
for each time found in obtaining the average.) The rows’ and columns’ final order is then
simply the order of their average positions. Most often, this order will be the same as the order
in the most common solution; it is always very close to that order.

Despite the additional complication introduced, this technique is considered preferable
to merely taking the most common solution, because in the event that several solutions are
common, this technique best takes into account the alternative orderings each solution
represents in arriving at a consensus final ordering,

4. Additional Details

The previous sections have discussed all of the features of the algorithm which are
important in practice. There are, however, two points of theoretical interest which must be
mentioned at this poin® Both concern situations which can arise in the process of iteration
carried out by the algorithm. Both occur so rarely, however, that in practice they can usually
be ignored.

a. Ties. In carrying out the algorithm, two or more rows or columns may have
identical moments. In this case it is necessary to resolve the tie to obtain an ordering so that
the algorithm can proceed. This is done by trying all permutations of non-identical rows (or
columns) and selecting that particular row (or column) order which yields the highest value of

4. Note that a particular order and its reverso are considered identical and saved as the same order.

53



2 e St i i S S AN

the correlation coefficient R.5 If several permutations of the rows (or columns) have the same
value of R, the algorithm simply accepts the last order investigated. It should be noted that
ties, while prominent for small, binary (0-1), arrays, very rarely occur when dealing with large

:%' arrays containing non-binary data. E
i b. Cycling. According to the definition of the algorithm, the iterative procedure is -
_’i: continued until a stable state unchanged by either row or column operations (Fig. 24, for ..f.
i B example) is found. In fact, however, it is theoretically possible that, instead of arriving at such .
' a stable state, the algorithm may cycle between a small set of states. Fig. 26 illustrates the g
phenomenon for a specially designed small array (in actual fact such cycling has only been h
é found in very muck ‘argcr arrays).® Once the algorithm arrives at the state shown in Fig. 26, e
! which it can reach from many other states, it will cycle forever between a, b, ¢, and d, in that o
1; _ order. Such an “infinite loop” itself represents a final state of the array. The nrocedure used
i | when such cycling is detected therefore is to terminate the iterations and take one of the ~:
l states involved in the loop as the solution. -
i- (&) o B v b — () | o B ¥ & .
} Al9 1 0 0 RECRDER Al9 1 0 0 -
Bl 5 0 0 5 ROWS cl3.52 135 ]
Cl3.5 2 1 3.5 B|5 0 0 5 *
Do 1 0 9 p|]o 1 0 9 .
1 } REORDER REORDER A
COLUMNS { COLuMNS
| (d) o v B 5 - (c) [« ¥ B8 %
! Al9 0 1 0 REORDER Al9 0 1 0
] B|5 0 0 5 ~ ROWS Cl|3.51 2 3.5
Ci1353 1 2 3.5 B|5 0 0 5.0
D ' 0 0 1V 9 DI 0 v 1
11134922

FIGURE 26. Illustration of Cycling Phenomenon

In practice, this phenomenon has been obscrved only very rarely, and only in very large
arrays. Furthermore, even when it does occur, it has been found that most often the algorithm
will find normal stable solutions when operating upon the same array from other starting
points. For this reason, this cycling, while theoretically quite objectionable, has been found to
be of little operational difficuity.

. AN < inibes

5. See Appendix H.
6. The symmetry and normalization inherent in the array of Fig. 26 are not necessary for the cycling to occur, but
were built in to simplify the array,
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5. Computation Time

For an MxN matnx, M operations are required to comgute each column moment and
N operations to compute each row moment. Therefore, for each iteration, the total number of i
operations necessary to reorder the rows and columns is 2MN, Finally, if it requirces | iterations :
for the algorithm to converge, the total number of operations to reach a solution for cach
random starting point is 2IMN. The computer time required on the CDC 1604 to solve a
particular 29x29 matrix was about 24 seconds for one starting point; an 80x80 matrix took 4
minutes. Note that these times are influenced by the number of iterations required for
convergence as well as by the matrix sizes.

i
i
18
Bl
B
)
£

C. RESULTS

This section describes two problems investigated with the Moment Ordering Algorithm.
It demonstrates that the algorithm can in fact uncover a dominant relationship from the vast
amount of information in a matrix, and can produce orderings of the rows and columns which
reflect this relationship.

1. U.S. Senate Voting Patterns

The algorithm was used to study the relationships between the voting patterns of a
group of U.S. Senators. The hope was that, given only the recorded positions of Senators on a
randoin group of issues, the algorithm could generate a meaningful ordering. The first 20
Senators (alphabetically) in 1968 were chosen, and their recorded positions? on 12 issues were
tabulated (see Tables 4 and 5). Thie recorded position of the President on cach issue was added
to the table, and the algerithm was applied to the resulting 21x12 array. The results, as shown
in Table 6, showed an ordering from conservative Republican and Southern Democrat at one
end to liberal Democrat on the other. To be sure that the strong ordering was not an accident,
the same type of array was constructed tor 12 different roli calls (but the same Senators), and
the algorithm was rerun, The correlation between the two sets of results (sec Table 6 again)
indicates that the ordering found was significant. The difference between the two rankings
does not, it is emphasized, reflect any inherent limitation upon the accuracy of the algorithm,
but rather is a result of the limited sizes of the samples of votes used in the analyses. If more
roll calls were added to the arrays, the results would approach each other more and more,
reflecting the enlarged and therefore improved sampling. The algorithm's solution indicates
that, as might be expected, although a Senator’s position on any given issue may not always be

7. As taken from tables in Congessional Quarterly Almanac, Vol, 24, 1968, pp. I1S-58S,
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; Table 5. ARRAYS USED IN SENATE VOTE PATTERN ANALYSIS*®
Vote | Roll®
No. |Call | Vote Subject Mattey Sponor
B
! 10 | 3358 A d to open housing bill to bar federal courts from impairing title to real | Frvin
propercty as recorded under state recording statutes.
: 2 20 [ 62-21] Amendment to open housing bill to punish anyone instructing i the use of fire Long
arms for riots, ot interfering with police during 3 riot. |
3 30 } 61-19F Amendment to open housing bill to provide 2 compromse hitl. ' Ineksen
1
: 4 40 | 19-S8 | Amendment to gold cover remaval hill to limit expansin of Federal Reserve I Allott
notes 1 irculation to 47 per year,
N SO | 43-R | Amendment to Standaeds of Conduct Resolution to alow use of pobitica! Yarharougle
contributions (or certan otfice expenses Jasits
6 60 | I-34 | Amendment to excise tax extension bill to provide 20t surtax on people Mundt-
‘ trading with Communist nations which supply North Vistnam Byed ¢Va
? 70 | $3.38 | Amcndment to exuise tax extension bill to impose 107 imuome tax wircharge Willms-
and it expenditures 1o $1H0 bilon. Smathess
8 80 [ 28.30 1 Amendment to Military Procurement Authorization to cut R&D funds trom Hart
. $7.9 10 $7 4 bihon,
9 90 | 39.29 ] Amendment to Conservation Fund bill to remove outer continent.i! shelt Witlams
revenucs trom tund for 1972 and 1973
. 10 100 | 29-53 | Amendment to Omnibus Came Bill 1o prohibit interstate ma order sales hennedy
of rifles and shotguns
i
It 1180 | S1-30 | Amendment to Ommbus Crime Bill to Jelete languuge denvong Supre €Court v dings
! junisdiction to review state court judges’ decisions to admat cycwitaes testimnny
i n evidenee -
121120 [ 33-44 | Amendment te Drintbas Crime Bilt to allovate 203 mnstead of K8 of funds n Hrooke
I block grants to states.
[R] P31 25-38 | Amendment to require itics as well as states to resmbune NI for conts of Rusellt k-
| ok Josses easured by NEDC. |
14 D13 1 42-27 | Amendment to detete seution on retseement benefits from Bl to entend terne Catbues
: ot otfice of bankruptey reterees -
i t
] 14 I 1S0 | 4432 l Motion 1 tible amendment which would have prosuded $52 muithon wpple- I Hobland
* ! mental dapeopnation to Labor Department for summer jobw, . a
16 ! i80 [ 6.6l | Ameadments to Militury Construction Authonzation to cut Mavy and Aw {Tark
| Force funds by 100 I
! ¢
17 170 | 3438 | Amendment 10 uvenae definquency hill to allovate il funds oy bock grantsto Murphy
i sates,
v 11RO [ 34-52 | Amendment to Federal Ageney Authorzation to cut NASA R&DD hunds gn Wiiliams
: i addstianal 3300 midhion )
0 l 190 | 30-40 | Amendment to Agncultural Act to bimit to $79.000 payments lo one prodiner Willians
for parhicipation i certan agricubtuni progras. ;
t
i 20 200 | 46-45 | Ameadment to bderest Rates Hill to stetke out language authorizing Fedetat Renaett C
' Reserve hanks to purchase obligations directly from federal agenuies.
i
M| 2010 | SE- 22 | Amendment to steike oul language added by House which limited experditures | Commutice
of State. Justie and Commerce to $1.98 tlhon :
» A3 [ 4628 | Forcign Al Authonzation Bl ‘ —
1
}
l o A} 230 | 23-35 | Amendment to Renegotialion Act to exempt Renggotiation Hoard from | Proxmre
39 empltoyee lmitations l
; %
e N 340 31383 | Amendment to Gun Coatrol Act to add a registration provivion. l Beoeke
i 4 faformation 1s taken trom the Congrevional Quarterl. Afmange. (Vol. 24, 196K1 pp 1588

® Ihe first 12 roll calls abowe are sncluded in the fist array, the second |2 in the second array
v When a roll call selected was ton oae-sided 1o oavey signifivant information. 3 toll vall close ta Tine o 1t was subbitutat
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Table 6. RESULTS OF VOTE PATTERN ANALYSIS*

Order Array 1° Array 20
1 Burdick Burdick
b2 Clark Bayh
3 Church Clark
4 Brewster Brewster
S Bible Church
6 CASE Bartlett
< Bayh Byrd (W.Va.)
& 8 Anderson Anderson
§ 9 Burtlett CASE
' 10 President Cannon
g 11 BROOKE COOPER
E 12 Cannon BROOKE
& 13 AIKEN Bible
% 14 Byrd (W.Va)) President
S 15 ALLOTT BOGGS
16 BAKER AIKEN
17 BOGGS ALLOTT
18 COOPER Byrd (Va.)
19 BENNETT BAKER
} 20 CARLSON CARLECN
21 Byrd (Va.) BENNETT

3 Seo Tubles 4 and § for input data,
bRepubUcans in capital letters.




predictable, overall voting patterns based upon ideology are strongly evident, and Senators can
be placed reasonably well on a liberal-conservative spectrum. More important, for our

purposes, it indicates that when a meaningful ordering is inherent in a set of data, the
algorithm will finc that ordering.

2. Chronological Ordering in Archaeology

The algorithm was used to attempt to order a series of archacological deposits. The
basic data available is the distribution of various types of pottery (cight. in this case) among
various deposits of archaeological interest (also eight, in this case). Robinson (Ref. 30), upon
whose work this example is based, hypothesized that it should be possible to arrange these
sites into a proper chronological order by assuming that pottery types come into and go out of
general use in a regular manner over time, and that, therefore, deposits similar to each other in
the amounts of various types of pottery will be close to each other in time as well. Thus. if a
satisfactory one-dimensional arrangement of the pottery deposits can be found, on the basis of
a pottery-type percentage array, the sites should be chronologically ordered. This was
therefore used as a test of the Moment Ordering Algorithm.

The raw data matrix presented by Robinson in Ref. 30 is shown in Table 7. If the
algorithm is performed on this array. the solution found is 3A, 2A, 3B, 1A, 3C, 2B, 1B, 2C,
which is very close to that presented by Robinson, and which satisfics the tests he carries out
on his candidate solution.

Table 7. RAW POTTERY PLRCENTAGES

Pottery Deposit
Type 2A M} 2C iA 1B JA iB 3C
l 24.0 1.4 0.2 1.3 0.3 29.6 54.3 0
2 66.8 0.9 0 0 0 0 3.5 0
3 1.3 0 0.2 3.8 0.2 14.1 14.0 6.5
4 0 0 0 1.3 0.2 0 1.8 3.3
5 G 0 0 3.3 0.5 0 53 5.5
6 4.0 0 0 249 1.4 7.0 1.0 21.5
7 0 97.7 99.3 52.6 97.4 0 LA 57.1
8 3. 0 0.3 2.8 0 493 1.8 0
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Robinson, however, introduces an “agreement cocfficient’ between two pottery types,
defined arbitrarily as:

N
g = 200- 3~ Py -Py |, wherethereare N sites,
k=1

—

and Py and ij are the percentages of types i and j in site k. Therefore, ag = 200 constitutes
total agreement between the composition of two sites, aj; = 0, total disagreement. Robinson’s
resulting array is presented in Table 8. Robinson then attempts to carry out a “rearrangement”
of this array to drive large numbers toward the diagonal; he describes a semi-systematic manual
method of doing so and presents the resulting order as his solution. The Moment Ordering
Algorithm was run on Table 8 and found exactly the same order as Robinson’s method -2A,
E 3A, 3B, 1A, 3C, 1R, 2B, 2C. The reordered matrix of agreement coefficients is shown in Table
) 9, where it is apparent that the larger matrix elements have accumulated around the main
diagonal of the array. The advantage obtained in using the algorithm, of course, lies in the fact
that it is an automatic, systematic approach and does not require personal judgments to be
made, as Robinson’s method did. The fact that it reproduces Robinson's chronological
ordering reinforces the belief that the algorithm is suitable for just this problem —ordering
entities in one dimension based on their interreiationships.

-

g1 E—-i

'

Table 8. AGREEMENT COEFFICIENTS ‘L
Pottery Fottery Deposit |
Deposit 2A 2B 2C 1A 1B 2A 3B 3C [
2A 200 5 ] 39 4 66 69 11
28 5 2 196 108 195 3 29 114 1
20 1 196 200 107 196 1 26 115 .
1A 39 108 107 200 110 50 82 172
iB 4 195 196 i10 200 4 30 119 l'
3A 66 3 1 50 4 200 101 27 .
3B 69 29 26 82 30 101 200 66
3C 1 114 115 172 119 27 66 200 E
60




Table 9. REORDERED AGREEMENT COEFFICIENTS

Pottery Pottery Deposit

Deposit 2A 3A 3B 1A 3C IB 2B 2C
2A 200 66 69 39 11 4 5 I
3A 66 200 101 50 27 4 3 1
3B 69 101 200 82 66 30 29 26
1A 39 50 82 200 172 110 108 107
3C 11 27 66 172 200 119 114 115
1B 4 4 3c 110 119 200 195 196
2B 5 3 29 108 114 195 200 196
2C 1 1 26 107 115 196 196 200

61




itl. THE MOMENT COMPRESSION ALGORITHM

A. INTRODUCTION

The Monient Compression Algorithm discussed in this chapter is based upon the key
observation that the distinguishing feature ot a matrix in perfect block form, (see sketc::) when
confrasted with the same matrix after row or column permutations, is that the moment of
inertia of each row and column about its mean is minimized: any row or column permutation
of a matrix in perfect diagonal block form will “‘expand” a block and make it less dense,
thereby increasing the matrix’s summed moments of inertia.

o
S

Consequently a procedure which minimizes, by row and column permutations, the
sums of the row and column mcan square moments about their means will drive the matrix ‘
into perfect block form if this is possible.!*? if this is not possible, the procedure will still tend
to produce a pleasing pattern because it tries to create dense blocks. This reasoning led to the
devciopment of the Moment Compression Algorithm,

Although Moment Compression has been superseded by Bond Enuig, both as a
theoretical ME and as a computational procedure, this material is being presented both to
indicate an approach which was explored and found impractical, and to show a logical
stepping-stone in the development of the Bond Energy Algorithm. Moment Compression was 3
historically important for four reasons:

1. Ambigiity will still exist because

: A |
8 and B
C ‘ Al

will be considered equaliy good. But one weuld be indifferent to such ambiguity as loag as the variahles have beon factored
correctly.
2. This assertion is proved in Appendix C,

Preceding page blank
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¢)) It was our first attempt?® to describe the appeal of a pa:tern in ter.as of
a quantitative ME, the sums of the moments of inertia. This was
motivated by a desire to produce dense blocks of numbers.

(2) It was our first attempt to devise an algorithm based on ME-
optimization. This was in contrast to heuristic algorithms, such as
moment ordering and some similarity matrix approaches, where it was
not clear what each step in the algorithm was trying to accomplish. In
particular, rigorous optimization of the ME would avoid the problems
of cycling and non-uniquencss* experienced in the Moment Ordering
Algorithm.

3) It was our first attempt to devise algorithms which find near-optimal,
rather than optimal, solutions for the ME. The major pitfall encoun-
tered in the Moment Compression case, but not in the Bond Energy
case, was that the approximate algorithm was slow® and poor.%

4) It used an ME which decomposed into two parts, one (sum of the row
moments} dependent only on column permutations and the other (sum
of the column moments) dependent only on row permutations. Conse-
quently optimization of the ME could be achieved in exactly two
passes, one finding the optimal column permutation, the other finding
the optimal row permutation. These two passes are carried out com-
pletely independently of cach other, and in particular, it is not
necessary to alternate between row and column permutations, as in the
Moment Ordering Algorithm. This decomposition of the ME into two
paris was an attractive feature later used in the Bond Energy ME
(row-bonds and column-bonds being optimized separately).

1. Dr. Gould hud carlier suggested use of the matrix correlation coefficient as a guide 1o the parf.yymance of the
Moment Osdering Algoriiam, but there was no particular pattern that one hoped to drive the matrix inte.

4. Cycling can never ovcur in an algorithm which iteratively optimizes an ME, for tho ME is monotone from one
iteration to the next, There would still be non-uniqueness if 3 few permutations achicved the global optitaum; this could be
expected only in degenerate cases, and normally wouid not occur. Pesrmutations achieving local (rather than global) optima of
the NE could be discarded on the basix of their inferior MEs, s» that many fower “‘stable” solutions eould be uxpected than in
the Moment (Oydering Algorithm,

S. At least a factor of three sower than che Bond Encrgy Algosithm, and therefore impractical for ywoblems larges
than about 25x25.

6. While the algorithm is always successful at putting & matsix into near block disgonal form, if t2is is possible, it had
two major weaknesses af (1) sensitivity of the result to the starting point, and (2) an inability to handle U chackesboard case,
thown in Fig. 6.
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B. MEASURE OF EFFECTIVENESS FOR MOMENT COMPRESSION 3
As stated above, the measure of effectiveness for Moment Compressionis the sum of 5%

the mean-square” column moments and mean-square row moments. For any NxM non- ,
negative matrix (by;), the ME is
N M :

ME(b) = 1;1 r + j§1 5

where Ty is the row moment for the ith row:

() =r = Z by |-
1=1 M
: nz=:l Pin
‘ m§l Pim
and € is the column moment for the jth column:
N
N R E
E igl " - N
g ng:l "
"
xuz=:l bm" 3

Let A = [“ij] te the original NxM non-negative matrix and let [bij] = [ai‘ 70)]

denote the matrix whose }'"‘ column is the t(j)u‘ column of A, where r = {a( Doa(2), ..., a(M) }

denotes a permutation of {1, 2,....M} . The problem of finding the best column permutation
of A is given by
7. While any cven moment can be usd, the second moment i the umplest. a

:
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N
min ) (b
” i=1 T
M .
= min Y., Qura
: ika()m(k) v
.
where -
. 2 .
o 4 & agaggk . 4
Qikrs = 2 . I<jkrs<M
i=i Wi w2 -
i .
M -
andw; = 3 aj; denotes the row sum for the ith row,
j = l £
Finding the best row permutation leads to a problem completely analogous to that of finding -
the column permic tation. kb
The above problem involves a minimization over all M! possible permutations. [t is T
whe.

called a quadratic assignment problem because of the double appearance of 7 in the minimand.
The problem of ME optimization is consequently equivalent to solving two quadratic assign-
ment problems. (Appendix A demonstrates that the same holds true for the Bond Energy ME.)

As discussed in Appendix A, exact algorithms for solving quadratic assignment prob-
lems are too time consuming to be practical for M larger than 15 or 20. Consequently, an
approximate algorithm was employed to find a near-optimal solution. The approximate
algorithm is a gradient search in M2.dimensional space, and is described in the next section.

" C. GRADIENT ALGORITHM FOR APPROXIMATE ME-OPTIMIZATION

The minimization problem posed above cun be rewritten as

min Z(X)
XePM

where PM denotes the set of all M! possible MxM permutation matrices (i.e.. all matrices of the
form X;; = §; :(i)) and where

w
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Note that C is negative semi-definite:
(y C.y) < o for any MxM matrix y.

The gradient search was motivated by a paper by Dem’ianov (Ref. 23) Exploiting the
quadratic dependence of Z and the negative-definiteness of C, one writes

Z(X) = Z(X®) + (X-XO, grad Z(X%)) + (X-X°,C,X-X%)

where the last term is non-positive and where

M

prad Z(X%W =B +2 Gy X°

j rs

rs =1
Consequently if X is chosen to minimize (X, graa Z(X°)), one finds Z (X} € Z (X®). with
equality usually implying that X° is local minimum of Z.2 The following grodient algorithm is
the result:

Step 1. Select an initial permutation matrix xold,
Step 2. Compute grad Z(X0),
Step 3. Solve min (X, grad Z( XOdyy for the minimrizing permutation matrix
XePM
xncw
Step 4. If XRew & xohd o ol o xneW g return to Step 2; if XMW =
xold‘ stop.

The algorithm converges to a permutation matrix which generally is a local minimum of Z(X).8
The time consuming portion of the algorithm is Step 3. The minimization in Step 3 is

8. The basic property is that if (X-X°, grad 2¢X"))2 0 for all permutation matrices X, and if (X-X°, ¢,X-X") = 0 for
all X for which there b strict equality, then X" i3 a local minimum for Z(-), where the domain of Z is now extended to the set
ol all doubly itochastic satrices,
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T i=1

M
min ad Z(X%), .
[ -}: ¥ )J, ﬂ(J)]
where 7 ranges over all permutations of {1,2, cees M} .

This class of problems is known as linear assignment problems and is most readily solved by
the so-called Hungarian method (Ref. 32). Unfortunately. the labor for the Hungarian method
is proportional to M3 or M4. and since several linear assignment problems must be solved, the
computation time for this gradient algorithm turns out to be excessive for large M.

D. COMPUTATIONAL RESULTS

The gradient algorithm described above was coded in order to provide near-optimal
solutions to the Moment Compression problem. The gradient algorithm is used twice; once to
minimize the sum of the row moments and again for the column moments. The major
computational effort goes into solutions of successive linear assignment problems.

The primary advantages of the gradient algorithm are its simplicity and (as the
following two examples illustrate) its excellent capability for putting a matrix into near
block-diagonal form when this is possible. The primary disadvantage is the large computer time
(a factor of three greater than for the Bond Energy Algorithma), rendering the method
impractical for matrices larger than . ™out 25x23.

The excessive computational e fort ari.es from two sources. One is the need to solve
successive linear assignment problems, cach of which is time consuming. The second is the
existence of several local minima for Z(X), with the consequence that the final data ordering is
somewhat sensitive to the initial data ordering. (The Moment Ordering Algorithm has similar
properties.) It therefore is necessary to start the algorithm at several randomly-selected initial
permutations in order to achieve a final permutation for which Z is close to its global
minimum. The need for multiple starts increzses the computational effort many-fold.

1. First Example

A 16x16 example from Ref. 33 was solved with the gradient algorithm for moment
compression. In this example, the 16 most frequently occurring non-trivial words have been
extracted from a long conversation. The input matrix, A-1, is shown in Fig. 27. A 1" is placed
in row i and column j if words i and j have coincidentally occurred in two or more sentences,
and 2 0" is placed there otherwise.
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11-13-69-3

FIGURE 27. Initial Word Relationship Array, Matrix A-1

Since the input matrix is syminetric, the problems of choosing permutations to
minimize the row or column moments are identical. It sufficed to find the optimal column
permutation, and to use this permutation on both the rows and columns of the matrix. The
problem of row moment minimization was solved 40 times, cach time starting tfrom a
randomly chosen permutation of the columns. Two solutions are taken as identical if they
differ merely by reversal of the order of the 16 words.

The results were as follows. Nine of the 40 starting-points led to the final matrix, A-2,
shown in Fig. 28, with the lowest ME. An additional 11 of the 40 starting-points led to a final
matrix (with the same ME) which differed from A-2 only by interchanging of the variables
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“bed” and “lips”. Since these two variables have identical rows and columns, it is under-
standable why ambiguity arises about their ordering.’

Inspection of Fig. 28 shows that the algorithm has partitioned tiie 16 words into three
subjects: vacation, sex, and sports. The transitional words between these three topics of
conversation are evidently hotel, hot, court, and leg.

All remaining 20 starting-points led to a ME which was at least 11 percent vigher.!©
Inspection of the next-to-best permutation (the one with an ME 11 percent higher than that
of matrix A-2) showed that the gradient algorithm converged to the wrong local minimum of
Z(X), in which only one of the three topics of conversation (sports) is clearl identified.

It is belicved that Matrix A-2 (and the variations obtained by permuting identical rows)
achieves the global optimum of Z(X), although this is not certain. It must be recalled, however,
that the primary goal is the discovery of informative patterns, not rigorous optimization of the
ME. For example, the rearrangement proposed by Giuliano, Matrix A-3 in Fig. 28, is just as
pleasing as A-2, even though its ME is not as good. The point here is two-fold: (1) data
rearrangements with necar-optimal ME may be as pleasing as those with optimal MEs; (2)
ME-optimization algorithms can fail to identify all inforinative patterns, especially patterns
which are not local optima for the ME.'!

The Moment Compression Algorithm is considered to have worked properly on this
example because it produced a pleasing pattern. The sensitivity of the gradient algorithm to
the starting point was not a serious problem, for 20 of the 40 starts led to a good answer.
Note, however, that a mere 11 percent degradation in the ME led to a seriously degraded
pattern.

The main criticism of the gradient algorithm for Moment Compression is its excessive
computation time. Each usage of the algorithm required 3 to 7 gradient steps (i.c., solutions of
3 to 7 lincar assignment problems) at about 2 seconds per step. The algorithm therefore
required about 10 seconds per starting point.'? Since 40 starting points were chosen at
random, to ensure high confidence in achieving a global rather than local optimum,!?® 7
minutest* were required to solve this probiem.

9. It should be pointed out that this example exhibits considerable degeneracy. Exammuation of Fig. 33 reveals that
rows 7-9, rows 10-11, and rows 14-16 are identical. The ME will be invariant under permutations of identical rows, in
addition, rows 14 and rows 5-6 are nearly identical; the ME will undergo only minor changes o these are interchanged.

10. The ME is here defined as the root-mean-square row moment,

s

11, Since the sterting points never fed to A-3, A3 probably is . ~t a lacal minimum for Z(X).

12. By contrast, the Bond Encrgy Algorithm requires only a few seconds per starting poii.

13. By contrast, the Bond Energy Algorithm is rather insensitive to the starting pownt, wo that fewer starting points tat
most 16, and probably much less) need be explored.

14, Oa CDC 1604,




BRI
ST

BRGNS N T 8, o it S

o e g e S gpe

e .

It may be possible to cut the running time by a factor of 2 or 4, since a “‘good” starting
point may require fewer gradient steps than a randomized one, and by using much fewer than
40 starts. Nevertiieless, the running time for a 16x16 problem (on the order of minutes, and
doubled if the matrix is not symmetric) is disappointing when contrasted with the running
time for the Bond Ynergy Algorithm. Consequently the gradient algorithm for Moment
Compression Algorithm. is probably impractical for problems larger than 25x25 or so. It works
well, but is too slow.

2. Second Example!$

A second example was run in order to test the ability of the gradient algorithm to
generate clumps of large numbers when the matrix elements were not restricted to 0 or 1. The
initial matrix is the 10x 10 matrix denoted as B-1 in Fig. 29. Since B-1 is symmetric, it sufficed
to find the optimal row permutation, and to use this permutation on both the rows and
columns of B-1.

A B CDETF GH I
Al5 4 1 0 4 1 1 0 3 1
B4 5 0 1 3 1 1 0 4 1
c{1 6 5 0 1 3 3 0 1 2
D|O 1 0 5 0 0 0 4 0
Ef4 3 1 0 5 1 0 0 4 1
Ffyvr 13 01 8 3 0 1 3
Git 1 3 00 3 5 0 1 2
H{0O 0 0 4 0 0 0 5 1 0
{3 4 1 0 4 1 1 1 5
JJ1 " 2 1.1 3 2 0 1 5

FIGURE 29, Initial Similarity Matrix B-1

The gradient algorithm was used with 60 randomly chosen starting points. Four
distinct MEs'® were obtained, with values 1.846, 1.987, 1.988, and 2.314. The frequency of

15. This is the <ame example as in Pigs. 7 and 8,
16. The ME is here defined as the root-mean squate tow momentam,

1 16
ME= [ igl r
7
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these MEs were, respectively, 36, 12, 8, and 4 (sum of 60). The matrices corresponding to the
four MEs (the best four permutations'?) were respectively, B-2, B-3, B-4, and B-5 and are
shown in Fig. 30. These four MEs are fairly close to one another and it is apparent that the
patterns in B-2, B-3, B-4, and B-5 are essentially equivalent and equally plcasing; all four
matrices succeed in identifying a 2x2 block of large numbers (variables H and D), a 4x4 block
(variables A, B, E, and I) and a 4x4 block (variables C, F, G, and J). The exact order of the
blocks, and of variables within each block differ, but one would be indifferent to such
unimportant differences (i.e., to the arrangement of the stray 1’s) since the identification of
the blocks of primary blocks is what is significant.

The computation time for this problem was about 3 seconds per starting point. The 60
starting points consumed about 3 minutes total computation time' 8.

Summarizing, the gradient algorithm applied to this problem succeeded, in all 60 of the
starts, in identifying the major variable blocks and produced informative patterns. The four
best permutations produced neurly equal MEs and equally informative patterns, without any
obvious way of choosing among them. The algorithm is considvered successful. but rather slow.
for this problem. It correctly “‘factored” the main variables. but was very time-consuming
compared with the Bond Energy Algorithm.

17. Two penmutations wese conideted equivalent if each could be vbtatned from the other by mercly sevening the

osder of the 10 rows and columus.
18. Qa CDC 1604 computer.
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FORMULAT!ION OF THE BOND ENERGY ME OPTIMIZATION
AS TWO QUADRATIC ASSIGNMENT PROBLEMS

The purpose of this Appendix is to show how the problem of ME maximization can be
rigorously formulated and solved as two Quadratic Assignment Problems (QAPs). This form-
ulation is presented only for theoretical interest, because published algorithms (Refs. 21, 22,
23) which find truly optimal solutions to QAPs are too time consuming to be practical for
large problems.! While approximate algorithms have been published® (Refs. 24, 25, 26, 27)
which find near-optimal solutions to QAPs, it was not believed worthwhile to explore any of
them, because none exploited the nearcst-neighbor feature of the function being optimized.
Only the sequential-selection approximate algorithm described in this paper exploits the
nearest-neighbor feature, and this latter algorithm is believed to be much faster, more
convenient, and just as satisfactory® as the published approximate QAP algorithms.

Suppose the original non-negative matrix [aﬁl is M x N with horizontal and vertical
bond energies contributing to the ME. The ME then consists of the sum of two terms, namely,
the row bond cnergies plus the column bond energics. Two optimization problems must be
solved for ME maximization. One seeks a permutation of the columns of | “ijl which maximizes
the row bond energy, the other secks a permutation of the rows of[aijl which maximizes the
column bond energy. These two optimization problems can be carried out independently of
each other. When both are completed, the optimal permutations of both rows and columns arc
known,

The two optimization problems are mathematically equivalent. Only the problem of

maximizing the row bond energy is presented here. This problem requires selection of a
permutation # = [w(1), #(2), . . ., ®(M)] of the integers [1, 2, ..., M] which maximizes

(.}
M=z

M.
i=1 {bubi2+ jg“a b (i1 * bijaa] * oMb M) (A

1. Computer tmes on the order of one vt several minules ate tequired for 1313 mateices, and eise as the fourth and

fifth power of the matrix size.
2. An extensive bibliography is contained in Rel. 26,
3. The satisfaction with the Bond Energy Algorithm is not based primarily on how clow it comes to achieving the

giubal optinum in EQ. (A-2) but rather ou the pleasing patterns of clumps which &t produces.
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The term within braces is twice the bond energy for the ith row of {bij], where [bij] = [ai,w(i)l
denotes the matrix whose jth column is the r(i)th column of [aﬁ] . The mathematical

problem may be rewritten as

M M
max 3 L Qag)rik) (A2)
" j=t k=1
where
N
Uers = 2 2ir%is (B, j-1 * Bi+1] (4-3)

I<j,k,r,s<M

The maximization in Eq. (A-2) is taken over all M! possible permutations. This type of
maximization is known as a quadratic assignment problem because of the double appearance
of m in the maximand. As previously noted, published algorithms exist for finding both
optimal and near-optimal solutions to Eq. (A-2).

INTERPRETATION OF ME OPTIMIZATION AS TWO TRAVELING SALESMAN PROBLEMS

The quadratic assignment problem formula‘ed in the previous section is actually a
special type called the open-loop traveling salesman problem. Let

N
dpg = E dr s = dyr
‘ =
denote the scalar product of the rth and sth columns of [aij ]. Then, the maximization in (A-2)

is equivalent to

M-1
max X deym+1), (A-4)
7 j=1
If one interprets dpg as the distance 4 from city r to city s, the problem in Eq. (A-4) is to find
the salesman’s tour [from city 7(1) to #(2) .. to city x(M)] of the M cities which has the
longest distance.® Note that the tour origin is arbitrary and that the salesman is not required to
return to his origin. This tour is therefore called open lovp.

4. If neceasary, a farge pozitive conxtant can be added to all ds in otdes to make them positive.
S. Subtraction of every d“ from a large positive constant leads to an oquivalent problem of minimizirg the tour

length.
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APPENDIX B

PROOF THAT THE BOND ENERGY SUBOPTIMAL ALGORITHM WILL PRODUCE
BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO
BY ROW AND COLUMN PERMUTATIONS
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PROOF THAT THE BOND ENERGY SUBOPTIMAL ALGORITHM WiLL PRODUCE
BLOCK FACTORED FORM IF IT IS POSSIBLE TO DD SO
BY ROW AND COLUMN PERMUTATIONS

The purpose of this appendix is to prove that the sequential sclection bond energy
algorithm will put a matrix into block factored form if it is nossible to do so by row and
column permutations.

DEFINITION 1

A non-negative matrix A whose elements ajj relate row entity i to column entity j is
called block factorable if the row entities can be decomposed into q disjoint subsets
Ri.Ry .. Rq. and the column entities decomposed into q disjoint subsets C,Ca, .. . Cq with
the properties:

(H Ifentity ie R . then aj; = 0
unless entity je Cjy, 1 <a <q
and if entity j€ C . then a4 = 0

onless entity i€ R, 1 €as<q

2) For cach 4. the submatrix { [“ij ] , e Ra_ i€ (‘a}

-

cannot be further decomposed.

That is, A can be factored into q biocks if the row entities and column entities can cuch be
partitioned into q subsets such that: (1) entities in one row subsct interact only with 2ntities in
the corresponding column subset and (2) it is impossble to decompose thie subsets turther.

DEFINITION 2

A block factorable matrix is said to be in block factored form! when all the row
entities vontained in each R lic vogether on the vertical axis of the maltrix and all the coump

1. Figure 4 shows a matrix in block factosed foem.
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entities contained in each C, lie together on the horizontal axis of the matrix. Clearly, the
matrix A is block factorable if, and only if, it can be put into block factored form by row and
column permutations.

LEMMA 1

Assume A is block factorable. If row entity i of matrix A is contained in R and row
entity j is contained in Rﬁ with a#8,then the scalar product of row i with row j vanishes.

Proo

-

For any entity k, aj=0 unless keCa and ajk=0 unless keCﬁ. Therefore,
aj 3jk=0 for all k since Cg and Cﬁ are disjoint.

LEMMA 2
Assume A ic block factorable and select any R, which contains two or more rows. No
matter how R, is split into two distinct subsets, it is always possible to choose one row

from each subset such that the scalar product of the two rows is positive.

Proo

-

If such a choice cannot be made, then the submatrix “aij]' ieR g, jeCy } is
decomposible, violating Definition 1.

THEOREM

If A is block factorable, then the sequential selection algorithm will put the matrix into
block factored form, and will do so by building one block at a time.

Proof

It the first row laid down came from (say) Ry, then the next row to be laid
down will be one of the remaining M-1 rows with the greatest scalar product
with the first. Since (by Lemma 1) all the rows not contained in R, have
vanishing scalar products with the first row, and since at least one (by Lemma
2) of the as yet unplaced rows from Ry (if any others exist) has a positive
scalar product. then the second row to be Lid down will come from R). By
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repeating this reasoning it is clear that all the rows from Ry are laid down
before any other rows are laid down. More generally, one subset, R, of row
entities at a time is laid down and all the rows contained in each Ra lie together
in the matrix.

Identical reasoning can be applied to show that the columns are also laid down
with all the columns in each Cg lying together. Therefore, by Definition 2 the
matrix will be put in block factored form.
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APPENDIX C

PROOF THAT THE MOMENT COMPRESSION ALGORITHM WILL PRODUCE
BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO
BY ROW AND COLUMN PERMUTATIONS
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PROOF THAT THE MOMENT COMPRESSION ALGORITHM WILL PRODUCE
BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO
BY ROW AND COLUMN PERMUTATIONS

The assertion here is that the minimum of the M3! of a matrix which can be placed in
block form via row and column permutations occurs when the matrix is in block form, and
does not occur when rows (or columns) of one block are separated by rows (or columns) of
another block. Consequently, rignrous minimization of the M)= must put the matrix into block
form. Since the gradient algorithra for moment compression will find a global rather than local
minimum of the ME, if sufficiently many starting points are used, it follows that the gradient
algorithm will put a matrix into block form if this is possible.

It suffices to examine how column permutations can minimize Z; r;. The basic idea of
the proof is that if the columns from one block are separated by columns from another block,
then removal of the extraneous columns, reuniting the columns from the first block, and
reinsertion (at one side) of the removed columns will strictly reduce Z; r;, hence reduce the
ME. Thus, the ME is at its minimum only if columns from the same block are contiguous.

An example is provided by Fig. C-1 which shows the S left-most columns of a matrix.
At least one X in each column is positive. Columns A, C, E form a block; no column to the
right of E lies in this block; and columns B and D are from other blocks.

The following theorem shows that if column D is moved out to the right of the block
(producing the column order A,B,C.E,D), then Z;r; will decrease. Similarly, movement of
column B to the right of the block (producirg the column order A,C.E.B,D) will reduce Z;r;

further.
1.
N M \
ME = }”‘ n vt Z ¢ r; = moment arm for row i
) o . _
i=1 j=1 £j = moment arm for column j

91
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COLUMN:

COOCO XXX |>»
HKXXXOO0OO |w
COOO XXX |NO
HKXXXOO0O |o
COoOO O XXX |m

FIGURE C-1. Sample Matrix

The general procedure is to identify the left-most column block whose columns are not
placed contiguously,? and to move the right-most extraneous column® from the midst of the
block to the immediate right of the block. Repetition of this procedure produces a column
ordering which places columns from the same block in contiguous positions. Since the
procedure leads to strict decreases in Z;r;, it shows that the ME achieves its global ME only
when the matrix is put into block factored form.

The theorem which follows shows that each r; is decreased if the zeros which are
interior to a row are moved to an edge of the block, and is unchanged if a zero at one block
edge is moved to the other block edge. Thus moving columns B and D to the right of E wil!
reduce

i=1

because the first 3 rows have an interior (or possibly left edge) zero at calumn B, and an
interior (or possibly right edge) zero at column D. Similarly,

7

z o

i=4
is also decreased by such a transfer because columns C and E provide interior zeros to rows
4-7.

2. Initiaily, this is block A.C.E.
). lafiially, this is colurn D.
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THEOREM N

N
S = j}-;l W [i- ]2 = moment for the vector W.
Suppose for some k, 2<k<N-1, Wy =0. Let * refer to a rearrangement whereby W has
been moved to the extreme right, and the vector then closed up:

- ‘ W, 1<j<k-1
.= ‘VJ 1 <<
0 i=N
N N
- _
= 00w =16 wheefs Y w, o
i< iK1 J (C-2)
* N L P
§ = jgl Wj [J'J ] = the moment for the vector W*, (C-3)

Then $* € S with equality if and only if W) is an edge zero (that is, if W;=0 for all j<k, or if
i }
Wj=0 for all j22k).

Proof:

Set-j-= E+F where

k-1 k-1

] = (C-4
E= & wiSk-1 Z w=U-p&-D )
j=1 i=1
N N
F= X wisk+) 25w =fkeD). (C-5)
jsk+l jk+1

93




Insertion of Egs. (C-1, C-2) into Eq. (C-3) obtains

s*.s g 73
- -5(1-;3)+2j=4:;H w; G-§)

=B(1-B) + 2 8j-2F = B(1-8) + 28E + 2(8- 1)F

Insertion of Egs. (C-4, C-5) produces, because 0 € § € 1, the result

s*. S<-38(1-8) €0 with s* = S only when s 0 or 1, which occurs only if wy is an

exterior zero. Thus S* = Sonly if Wy is an exterior zero. The converseis easily proved. QED.

Note that with the choice

we find S=r; = moment for ith row of (aii}‘ The theorem therefore states that the * -
rearrangement (namely removal of an interior zero from the ith row of (aﬁ]) will strictly
reduce r; unless the zero lies at an edge.
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APPENDIX D

THE BOND ENERGY COMPUTER PROGRAM
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THE BOND ENERGY COMPUTER PROGRAM

A. OPERATION OF THE PROGRAM

The computer program for the Bond Encrgy Algorithm consists of two separate parts.
The first part of the program reorders the columns while ihe second part reorders the rows.
Figure D-1 shows the essential program logic for selection and laydown of the rows t obtain a
new order with a large NME. Tiie logic for the column selection is identical. 1t was found that
in order to examine a number of local minima it was nccessary o initiate tne program at
several starting rows (or columns). However, as pointed out in Chapter 1 of Part 11, almost all
starting points (rows) resulted in a “'good” solution.

B. CARD INPUT FORMAT

The input format that ‘s described here is for arrays with integer clements. The oniy
.3l change that would have to t: made to accommodate decimal entries is in the input and output
formats for the initial and reordered arrays.

a. Cardl Format (415)
MM = pumber of rows in the matrix
8 NN = pumber of columns in the matrix
‘ {FZi = an increment to determine the starting columns or rows.
If IFZ1 = 5 then the algorithm is run K times beginning
with row ! then row 6, and continuing in increments of
j S until K*IFZ1 + 1 > NN or MM
| } FSYM = 0 t)r.bhmk if thc. input army is not symmetric
A il input array is symmetric
i
53 b.  Cards 2 through MM + I Format (8011)
'% (NA(LD, ] = 1, NNy is the I'h row of the snput mawrix. This card
{ is repeated for ali MM rows.

e
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ENTRY

COMPUTE AND STORE THE
SCALAR PRODUCTS OF ALL
M ROWS WITH EACH OTHER

LAYDOWN FIRST RCW AND
SET =1, WHERE | IS THF
NUMBER OF ROWS ALREADY
PLACED

le
SET k=1, WHLRE k = NIUMBER
OF THE ROW WHQSE INCREMENTAL

CONTRIBUTION TQ THE ME WILL
1 Bt COMPUTED

4
SEVk-kt1] P 'v
' * 7 HAS ROW k ALREADY
@‘r‘.ﬁ‘f BLEN PLACED?
YES
NO
L )

SET j=0, WHERE j=THE
ROW FUSITION UNDER
CONSIDERATION

d
v

4
COMPUTE INCREMENT TO ME
BY FLACING ROW & IN

POSITION j

3
{ DOES =i SET j=j+1

b YES

SAVE POSITION POS{k) HICH
GIVES GREATEST INCREMENTAL
CONTRIBUTION TO ME FROM
THE PLACEMENT QF ROW L

DOES k=M

YES

LAYDOWN ROW k* IN POSITION
POS (k*} WHERE k* IS THE ROW
WHICH WHEN PLACED IN POS {k*)
GAVE THE (>REATEST CONTRIBU-
HON 1O THE ME

DOES i=M

153}
A 4

! STOP I
10-29-49- 1

FIGURE D=1. Flow Chart for Sequential Row {or Coiumn) Selection and Laydown
for Bond Energy Algorithm
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C. PROGRAM OUTPUT
The computer program GROUP 2 consists of the following output information:
(1) A printout of the input cards.

2) A printout of the new row and column orderings at each step in the
sequential laydown procedure.

(3) A printout of the final reordered matrix.

4 A printout of the final horizontal and vertical MEs.
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TR 2L

100

12

10
i0e

BOND ENERGY ALGORITHM PROCRAM

COMMON MM,NN
COMMON NAt90,90),x¢00), 190),Mg(90),NPOS(gU) NSH
SET INPEX B & %, W = |

IDIM = 99

READ {00, MM, NN, IF2,IFSYM
IPCIFSYM,EQ,«0) TFSYMul
PRINTLOO0, MM, NN, IF2L, IFSYM
FORMAT (416}

DO 1 Imy,NM

READ 101, ¢Natl, ud dsl,nn
Do 12 yal,nN

IFINACY,UY. EQ.=0) NatY,yrs0
CONTINUE

PRINT 102, (NACT,J1.4m4,NN}
CONTINUE

FORMAT(80TY)
FORMAT(1Y,8012)

DO 22 xxmg,NN,TF2Y

Do 2 Tug, um

Kil)s]

DO 3 Jei,NN

21J) & DM o (Jel)
Kil)ysnn

K(KK)m{

ItEMpPy o Lt

Lid) & Lixn)

LIKKY & ITEMPY

NYICKsp § mMTICHaQ

HELupSrpoun
NySNNe{

DI 150 NCOUNYSY,NY
NClenConT el

DO 200 J=NCY,NN
MEiJiad

NPOS () el

DO 240 Nuo,NCOUNT
NgUMel000

DO 211 ey, mu

G o K3y o LI
Moe R(TY o LMY
Moo a{T) o LtNeY)

IP(n.L0. 0100 10 212
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2 T

AaPREg INESIALTTTVY T ATRERT TR Ly IO NN

IF (Na(G).EQ.0) GO TO 213
Ir (NACKWY,EQ,.0) GO TO0 242
NSLUM & NSUM o NACW) * HAL(G)

212 IF(N,CO,NGOUNTIGO TO 211
Ir (Naem),£Q,0% GO YO 211
NSUM & NSUM o NAEM) ® NaA(O)

243 Irin,g0.0.0R,N,EQ,NCOUNT) GO TO 218
Ir (NatwW),£Q.0) GO TO 214
NSUM & NSUM » KACM) & NAINY

241 conTINUE

;E

s

IPENSUM LY, MECJIIGO TO 210
IPCNCOUNT.£0,.1) GO TO 214
IPONSYm NELMECU)Y GO TO 214
IF(N.EQ.0,0R.N,EQ.NCOUNTY GQ TC 214
Go 10 240

214  CONTINIE
MEC J)aASUM
NPOS(J) s

210 ConTINUE

gt

200 CONTINUE

MEMAXSMEINCY)
NPMAXBNPOSENCY)
INAXENEY
NCRANCOUNT 2
D0 220 I=NC2,NN
Ngwsl
IFemME(Y) LT . NENAXYIGO TO 220
IP(MELTY. EQ. #EVAX) CALL €Q21¢I,IMAx}
Irensw N .y GO TO 2
Inaxs]
MEMAXAMELY)
NPMAXENPOSII)

220 CONTINUE
MELEME S o MEMAX=L000
IPONPMAY . NE.NCOUNTIGO TO $40
NNLEL(THMAX)
LIZMAN Yol ENPMAX L)
LINPHAX L) ONNY
G0 10 1s0

140 IFU(NPMAY,NE.O) NTICKENTICHeS

NPLaNPMyY el
NSAVE®L (IMAX)
NP2ONP 4,4
FOR (48 ToIMAX, NP2,
Lildeptgedn

143 CONTINUE
LINPLYONSAVE

150 PRINT $05,(L¢2)/IDINey, TalshN)

IPCLIrSyu. E0.0) GO TO 193¢
DO 1852 tat,NN
192 Kol (1) ¢ 2DIM o 2
Mg 2engd
HPICKENTICON

102
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4
4
B
)

151
105

412

413

411

a4

410

400

GO YO xs¢

CONTINUE
FORMAT (40I)

"1'”"-1

DO 350 MCOUNTEY, MY
MelamgoyunT el

DO 400 IsMCy,MM
ME(I) w0
NROS(I)e?

DO 410 mmg,MCOUNT
mgumgioos

DO 4131 gsy,NN

G 3 K(TI) & LtJ}
H 8 K(My o L(J)
Nom k{wet) o LtJ}

IPtH,EQ n)GO TO 412

IF (NA(G).EQ.O0) GO TO a1
IF (NAtW).EQ,0) GO TO 412
MGUM & MSUM « NALR) * NatG)
IP(M,E0 MgOUNTIGO TO 413

IF (NA(NY.EQ.0) GO YO 481
MSUN = MSU" o NACNY ¢ NALIG)
IP(M,E0 0, OR, N, EQ, MCOUNT) GQ TO 411
IF (NAtHY, !Q 0! GO TO a1t
MGUM & MSUM o NAIM) ® NAIN)
CONTINUE

IF(MSUm LY, ME(T))G0 TO 410
IPtHMCOUNT . EQ. L) GO TO 414

IPINSY» NE ME(T)) GO TO 41d
IPIM,EQ.0,O0R M, EQ.MCOUAT) GO TO 614
GO Y0 &if

CONTINUE

ME(l)amgUM

NPOS(T)a™

CONTINUE

CONTINUE

MEMAXEMHE INEY)
NPMAXGNPOSINCY)

SETY LTS

MCIEMEOUNTe2

DO 420 YsNc2,M¥

Nguo

IPI(MELT) LY. MEWAX)ICO TO 42
I""Et!i.lg ngMAX) cALL lld(!.d”l!)
IPINSH,NE. L) GO TO ¢

Juaxel

HEMAXBHELY)
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NPHAXGNPOSLT)
420 CONTINUE
ME2BMER JMEMAX~1000
IP(NPMAyY NE.MCOUNTIGO TO 340
MMLBK({JMAX)
x(JnAX).K(NPnAx¢1)
KINPMAY o1 s uMN]
GO T0 38N
340 IP(NPMAY NE,p} MTICKSMTICKe§
MALENPMAXSY
MSAVESK ¢ MAX)
MPZEMPY LY
FOR 345 JSJMAX,MP2,1
KiJisKt =iy
345 CONTINUE
K{MP{)asMSAVE
350 PRINT 105,(KtJ),Jod, MM
351 po 352 g & ,NN
352 L(G) = L(GI/IDTM o &
PRINT §03, (LiJyadsdaNm)
pg 500 II§|NN
PRINT 501.K(:).(NAtxfx).L(J)n.Jal.uu)
40 NYINU
’ 82,N§ sgz.NTch,NYIcK.H£1.le
22 NTINU
59 ggRHiT(EI:IS»5!0'"51"01505‘0f“E2"015115
508 FoRmMAT(ir, 12, ?X,8712/)
603 FoRMAT(iN1,//5%,8712//)
EnD

SYBROYTINE EQ2T(II.IM
MMON MM, NN
ggunon NA:OOoQO)oK(Oo)oL‘OO’oN£(9°!oﬂ'ﬂsitoiONSU

SEY INDEY G & K, N ® |

Ngwag
1P INPOS(1L1.£Q. NPOSITIN)IGD 70 708
RETUAN

704 DO 703 yey. MM

G = KU1y o LIV

N KT e LI

IP (KA(G) . NE.NACMY) GO YO 783
902 CONTINUE

RETURN

703 NSUNiwg
NgUNZe O
B8O 704 Tui ne
G @ HtYy o LIID)
Woe iy o LITMY
NgUNL o NEUMT o NALG)
704 NSUH2 8 NSUW2 o NAIWY

AgTuRN
EnD
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704

702

703

; 704

909

SUBROUTINE EQ2UtJJsJM)
COMMON MM,NN

COMMON Nat90,90),k(9C),(90),MECOC),NPOSLQO),NSN

SET INPEX G = X, W ® |
N§ws(

IFINPASIJJY.EQ,NPOSLUNYIGO TO 708

RETURN

Do 7902 IS4 ,NN

G & KtJy)y « LU}

Hos (MY e L(T)

IP (NA(QR)Y.NE.NACMY) GO TO 703
CONTINULE

RETURN

NSUMYmp

NSUM2w0

DO 704 124,NN

G ® KtJJy o LD

Wom o KigM) e LD
NSUML & NSUMY o NalG)
NSUMZ w MSUM2 ¢ NACNW)

IPINSUNML, LY, NSUM2INSHRY
RETURN
END

SUBROUTYME EO2
TEMPORARY SUB

PRINT g0

FORMAT (FNTER EQ1e}
END
EnD
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THE MOMENT ORDERING COMPUTER PROGRAM

A. INTRODUCTION

Two versions of the program are available. One, which handles arrays of size up to
100x16, reads the arrays directly from cards. The second, which is identical to the first except
in its input-output procedures, can handle arraysup to 100x100 and rsads its arrays from tape.’
Because the two are so similar, only the first will be presented here: most of the discussion,
however, applies equally to both versions. A flow chart showing the main program logic is
given in Fig. E-1. The following section provides instructions for the use of the program;
Section C describes the program output.

B. INSTRUCTIONS FOR USE OF “MOMENT"
The following are the instructions for use of the moment program.

(1) Arcays of size up to 100x16 may be analyzed with the card input
version of the program; up to 100x 100 with the tape input version.

(2) Arrays for the card input version are punched onto cards, one row per
card, as five-place floating-point nuimbers.

(3) As many separate arrays as desired may be analvzed in or~ computer
run. Each may be solved once, or, if desired. ary number of times, with
the starting ordering chosen at random. In the latter case, the overall
averaged solution is given as well as each individusl solution.

(4)  The following data cards are necessary for the program:
(a) A card with 8 random integer digits in columns 1-8. This is
always the first card of the input data deck, and is required to
initialize the random number gencrator.

1. Theoaly modifications necesary are i the foum of the input dats.

109
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{ INITIALIZE
] ENTRY _’l PROGRAM
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—_
READ IN A
NEW ARRAY
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A et i
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TO BE ANALYZED
IN RANDOM MOC:t ?

¥ C

ORDER ROWS

N s dtatin d hoeis o
R 1

[. RANDOMLY

1

CALCULATE INHIAL
CORRELATION COEFFICIENT

— ¢

DO ROW AND COLUMN OP-RATIONS
CALCULATE CORKELATION COEFFICIENT

MAS ARRAY RETURNED
L TO OLD FORW?

-1
15 {1 BEING AMALYZED
IN RANDOM MODE?
Io 1
N * £S5
\ B 4
PRINT SAME SOLUTION A%
SOWNON PREVIOUSLY FOUND?
{ ALREADY HAVE ENOUGH
\DIFFERENT SOLUTIONS ?
YES JC}
] 4

M ) G

L YES

STORE NEW SOLUTION;
L PRINT SUMMARY

SOLUTION'S COUNTER

[ INCREMENT OLD

ENOUGH RANDOM

ATTEMFTS?

* ;—-;-——YESJ

SUMMARIZE AND
FANTY ALL RESULTS

Pi-a%-14

w—
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FIGURE E-}. Flow Chart for Moment Ordering Algorithm
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§

(b)

(c)

(d)

COL. 1

82340795
3 5SAMPLE DATA
3.0 0.0 0.54 11
2.7 6.11 12,04 18
14.0 111, 6.08 1.
RANDOM

FIGURE E~2. Sample

0

A card with “FINIS” in columns 1-$ as the last card of the data
deck.

In between the previous two cards, separate packets of d-..
cards, one for each array. If an array is to be analyzed i+ the
random mode, the first card of that packet must contain the
number of random tries (an integer) to be carric: out in
columns 14, and the work “RANDOM” in coluiins 9-14. If
this option is not to be exercised, this card is merely omitted.
The next card (therefore the first card for the one-time-only
option) contains the number of rows (integer) in columns 1-4,
the number of columns (integer) in coluinns 5-8, and the name
of the array in columns 9-80. This is followed by the cards
containing the array proper.

As many packets of cards for individual arrays as desired may
follow each other. A sample data deck for the card input
version is shown in Fig. E-2. {A deck for the tape input version
could be identical except that it would not have the cards with
the arrays themselves punched.)

-=RANDOM NUMBER
-e=HEADER CARD, ARRAY |
3
| }ARRAY 1

~#=RANDOM CARD, ARRAY 2

ARRAY 2

0
4
0
10
4 2MORE SAMPLE DATA -¢=HEADER CARD, ARRAY 2
0
0
0
0

RE SAMPLE DATA -4~ HEADER CARD, ARRAY 3

ARRAY 3
= LAST CARD

Data Deck for Card Input Version of Moment
Ordering Algorithm

i
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(3)

(4)
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C. “MOMENT"” PROGRAM OUTPUT

The program output consists of the following:

For each array analyzed, the program prints out a complete copy of
the array as read in, numbering the rows and columns.

If only a single analysis is to be done, the program first prints out the
initial value of the correlation coefficient, R, and then after each row or
column operation prints out the entire array, numbering the rows and
columns appropriately and giving the new correlation coefficient. When
it reaches a solution, it prints the array and the message *“THIS IS THE
SOLUTION.”

If the random-ordering, multiple-attempt option is being employed,
each time a new solution is found the program prints out the order of
the rows and the value of the correlation coefficient. When it has
finished the appropriate number of attempts, it prints out a complete
copy of the most-commonly-found solution and lists all of the solutions
found, giving the correlation coefficient, the number of times found,
and the order of the rows for each. It then lists the overall averaged
solution, giving the ordering of the rows and columns, and the average
position (with the RMS deviatioan) of each row and column.

If the program encounters an unstable array structure (i.e., one in
which no solution may be found, but rather a cycle of states occurs
which will repeat itself indefinitely), it takes that as a solution, but first
prints the message “THE FOLLOWING SOLUTION IS NOT
STABLE.”
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MOMENT ORDERING ALGORITHM PROGRAM

PROGRAM MOMENT

TRACE ARRAYS

SYEPHMEN DEUTSGW,EXT,358,SED

COMMON 21100,14)

DIMENSTON NARRAY(S0(0)

DIMENSTICN NSOLS(ES, %81

DIMENSTON “S0($:2%,100)

DIMENSTON MEIODY, NtIa) M (LNt , AT{3g)yMT0¢100),N70(14,
DIMENSTON NMt100),pM0(100),0N16),nN0( 160 ,TEXTIO)

DIMENSTON ROLD(100),N0;pes080)

DIMENSYON RS VE(100)

T AND » REFER YO COLUMNS, J AND N YO ROwS

59811.8-4

TLEFtag,

INOWRCLOCKYMETLEFT)

IFCTLEFY. LY. 690,) GO YO 16

Call SLURP(NANRAY,5000,0)

CONTINIIE

RIAD 32 npum

FORMAT 74}

RANSRANYE (NDUMY

CALL READINIME MSIZE NSI20, JEXT,H, NoNMCNLH, NNAX)

IFtuC, 20,1y CALL RANDRP (M, M§IZEGNME)

901-2.

M ISTsy

CALL CCeM9T2E.NSTI2E,
IPCUg ne $9PRINTY 10g,4
CONTINUE

Cabl N'{b( n,N,nS!lEaN!IZE.L#?O.NYO.DMDW.NY. NT,IEXY.MC)
CALL Dump(8)

IPUME, we , 1YPRINT 108,R

Call mint M, N, MSIZE NSYZE, R, PTG NYO, DM, DMO,MT,NT, JEXT, M0
CalL DUnP(Y)y

IPCMC,NE,LIPRINT 108,R

FORMAT(,7¢ Rue,Fl0, 5,

IPINLESY,£0.8) GO T0 9

00 11 Yel.NL2S8Y

I7tABS(ReRSAVEID}).GE,EPS) GO Yo 1t

IPCI, NP NLIST) PRINY 42

FORMAT (o TWHE POLLOWING SOLUTION IS #OY STaaLEe)

Go Yo 110

CONTINUE

NLISTeN 18Ty
AAVE (N, 187 10N

IPENLISY. 20,100) N ISTeO
a8 10 {00

CONTYINUE

IPENC,E0.1160 10 2

CALL PayNTA(NSTZE,NSI2E,
PRINT $0¢

FORMAT, 75 TNIS IS THE SOLUTION®)
Go To0 &

IPtNyM £0.0) G TO 10

00 o Zui,NymM
IPCABSRsAOLDLTI VLT EPS) A8 YO 7
CoONTEINUE

IPiNuM aE.25) 00 Y0 @

NyUMBNUN L

ROLDINUMI BN

M,N,RY

MgN MY NT, TENTY
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NOLOUNUMY &Y
15 DO 18 T41,MSI12E
18 MSOLSINYM,T)eM(])
DO 13 1q1,NST2F
13 NSOLS(AUM,T)aN(T!}

5 PRINT X (mvc1),Ini,MST26)
S FORMAT(,%4,3528/1y,3573,1x,3013)

PRINT 4,R
4 FORMAY (4N Rw ,ri0,5

)

21 IF(NME,GE.NHMAXY GD TO a

G0 Yo 20
7 NOLDII)anOLD/I) et
GO 70 21

8 Cali syuc:txv.~u~,nsxz:,~szzc.DHO.n~o.uSOLs.NSOLs,HoLu.NOLb,Nuc;

Go 10
EnD

suanouvx~$onenux~tNc.nSXZE.NSIZEoXElYo"oN.~HC.~U"cN"AX’

counon 100,14,
DIMENSTOM
DATACIOANBEHRANDONKY
MCsl

MEIN0 ), NELeramyY(200) AT edg) 2EXT(g)

3 READ 2,MS2210,NSTI2E,TEX"

¢ FORMAT(214,9a8)
Nugal
NyMe g

IPCIRAN EQ.IEXTCL))Y GO 10 4

DO 4 Ysi,v8T2E

n!‘b ,0!“31\130\,.10“512(’

4. CONTINUE
S FORWAT(qars,2)
00 & Ieti,NSI2E
¢ Ntlyel
DO 7 Teg,m8IZC
7 %tlreg

CALL PRINYA(MSIZE,NSIZE, MEN, MY NT,IgXT)

PRINTY 1%,3¢xY

11 FORMAT,/10M160LUTTONS /1Y, 008/

RETURN

1 NMAXSNSTZE
Mesy
60 10
ExD

SUBROUTINE RANURD(M, NSI2E,NNC)

conmon 5 1108,1¢y

DEXENSTON “(100)

DINENSION RANS(100)
9 DO P re1,mS12F

RANS (X1aRANSF(d)
10 CONYINUE

Call SHRATILRANS, M, MSIZ2E, 4}

LLIA LT .78}
RETURN
End

SUBRGUTINE SUMCTERT , NUm, nSLRE, NEI2C.0N0,DN0H3OLS,)NP0L S, H0LD,

ANOLD NNE) |
comman 4:100,14)
DIMENSTON Ma(L00)

{14

e G A B cTY

Bt i

s

Ervi
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OIMENSTON
DIMENSTION
DIMENSYON
DIMENSTION
DIMENSTON
DIMENSTON

HSOLS( 28,100,

NSOLS(28,16)

AVEL100),pEV1003 INORDER (LU

ROLDeL00) ,NOLDIL08)
!ERI(O’."7'100).~1t16).u~0<nsxz:».o~oc~8115;
NXtiay

12 1800wy
IPINUM,LT.2) GO T0 26
DO 22 Ye2,NUM
22 IP(NOLP(T),RT.NOLD(ISOLY) XSOLAY
28 Mlwid
DD 33 Tay,uSYZE
33 MX(D)mrSOLS(YSOL,T)
DO 34 1.t NSTZE
34 NX(TIaNSOLS(TISOL,I)
CALL PRINTA(MSIZE,NSIZE,MX)NX, MY, NT,IEXT)
PRINY 8§
38 “ORMAT(,/7/% THIS IS THE “OST COMMON SOLUTION®)
PRINY 13,2r8xY
131F°“”A7(1N se SUMMARY®/9X,048/ /X 0Re, g X9 1IMES FOUND
7
DD 25 141,M812€
25 I7iDMOCY).€0.0,) MZaMZel
MLOBMZ o (u8Y z-u2) /3
MNIOMSTIE et (MSTI2E~K2)/3
MGEMZ et
NuZag
00 14 Tur,N814€
14 reDNOOY) . 4.0, NMZaNMZ oL
0o 23 II'!:NU”
0C 24 Toi,mMSY2E
NMY(T) eueDLS(TT,1)
24 MYy
CALL SORTI(MX,MT,NSIZE et)
u,on.(!
DO 27 TeMa, M0
MYALaMSOLSIISOL LHT(I))
IPeMval  Le , MLO) MOXaMONel
7 XN""‘AL,G(."NI! MOKeM0Na |
DO 2t Te™NI,MSIZE
MVALnASOLEETSOL,MTIT)
IPEMVAL LEMLO) MOAaHONe!
d8 IPtHyal GE . 5HT) MOKeMOxe !
IriMoK,7.0) G0 'O 31
DO 29 fef,H812¢
€0 IPIMSOLSITT ), GY,HE) »50L8CI2, 2 eNSIZEenTslensOLSILT,I)
DO 37 rvel,nsTlp
37 IPINSOLSIRY, ). GT Ne2) NSOLNITT 2) eNST2EoANZeL-NSOLSIIT,
00 38 pei, mgi2E
IR ALITUIR IFE S )
32 uyeliet
CablL BORTRINY, MY, MSTZE, oY)
31 PRINY 82,00000325,NOLDILT) MY 0Y), g8, NS28¢)
32 FORMAY (1Y, 0380,9,20,9%,3288,80x,8088/8px,347))
33 conTINug
PRINT {38
13 FOMMAT( 20¢ AVERAGED J0LUTIGNe /e  RQW
1)
LI
DO 16 el NSIRL

AVERAGE

HKOw ORDEKR®/)

In

DEVIATIghs




AVE(1)e0,
DO 16 Jal,NUM
AXZMSOLS(y,T
AVYsNGiD¢J)
AVECT)maAVELT)eaXeoaY /AL
16 NORDER(Y)nY
Do 4y zsi.nszzt
DEV(11al,
Do 18 ygt,NUN
AXBMSQL 5,1
AveNOLD 1 J)
48 DEV(I)aNEVIIIeAY{AXOAVE(L))e02/A7
17 DEVITImgaRTINEVIIY)
CALL SOnY2(AVE,NORDER,MSIZEs=1)
D0 19 p4l,mMSY2E
PRINY 20 ,NORQER(I)FAVELT) ,DEVINGRDERIY))
20 FoRMAY (18,2710, 2y
19 coNTINDE
PRINY
Saifoﬂvnvc,//. AVERAGED SOLUTIONe///72 COL. AVERAGE DEVIATION.
/1
DO 36 1s1,NSIZE
AVE( )0,
Do 36 J011~U"
AXSNSQLStY, D)
AVENOLD ¢ J)
AVE(T)waVELTI®AXOAY/AZ
36 NORDER(T)w?
DO 41 Tel1,NSIZE

DEV(I)el, I

Loy s

R NIXT N RIS SR T

0O 35 Jel,NUW

AXSNSOLS(J,])

AVaNOL D¢ J)
30 DEV(T)eDEVIIIeAY*(AX=AVE(D) o022/ AT
41 DEVII)wSORT(DEVIIYN)

Call SORTP(AVE,NORDER,NSTZEI~1)

DO 40 t1.1,nS128

PAINTY 20,NORDERIIISAVELT ) DEV(NORDERID) )
30 conTINUE

PAINTY ai
21 FOPMAT(gny)

END

SUBROUTING PRINTA(MSIZE,ASIRE, M 4o MT,0T,15XT)
CoMmoN 4t100,344)
DINENSTON w140
DIMENSTON MIMSTIEY  NINSY2E I MY (BSIZE)INTINSTZE)D
DIMENY: un et (9}
PO 3 leg.,m812C
IR ST E)
3 M l)ey
CALL SORYI(MY, MY, NSTI2E ei,
Do 5 fel,nolll
LI IR SLI LT} 4]
8§ NTtLiey
CabL SORTRUMA,NT, RERLC,o1)
PRINT 10,3EXY.NY
10 FonMAT cin, 0a02//780 ,01,1620/)
TRYURTINCIIE
PRINT 200,MT(3,AINTLTI NTEL I S0t , 80220

i, e b,
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100 CONTZNUE
200 FORMATI{M),J6,16F7. D)

END

SUBROUTEINE MIDt M N;MSIZE,NSIZE+R,MTQ,NTQ,DM,DHO, MY, NT,IENT,MC)
COMMON 100,145
DIMENSION MX(100)
DIMENSTION M{MSTZE) s NINSTZEY MTUNSIZE) 4NTENSIZE)D
DIMENSTION MYO(MSIZE},NTOUNSIZE)YDM(MSI2E) pMO(MSIZEY
DIMENSTON TTABLE(L16),TYIF¢300),MYSavE(L00), TEXT (O
EPSal g8
DO 3 Iet,M8IZE
NX(I).M(I)
3 MY(IveY
CALL CORT2(MX,MT,MSIZE, =1}
DO 5 Iul,NSIZ2E
MY{T)YaN¢T}
§ NY(I)u?
Call SORT2IMX,NY,NSI2E,~!}
poll0 p.1,Ms12€

110 MY0(TIamMT(Y)

DOi1s Ja1,NSYIZE

118 NYOCJrenT Y)Y

00 20 Tel,MSTZE
Disl,
Xys0,
DO 15 Js1.NSIZE
DimDlasemr(T),NTUYN)
XN®J
XqOXqoXN®AIMY(LI,NT(uU))
is convINug
Det(X)axy/Dt
20 CONTINUE
DO 12 Yei,MSIZE
12 puO(MY(TY Y aDHLT)
CALL CROER(DM,MSIZE,NT, M, NTQ)
QOESThZ.O
KNOMSTTEet
DO 21 Tel.kK
ItIECYsa0
Jeled
IP(DMOLMTITN) EQ, DMOEMY () )IITIR(]I )Y
IF(DMO(MT(TIY. EQ,0.) TTIECTIC0
21 CONTINUE
ITIE(MsL2E 1m0
NYIEDey
Ian0
22 Ialey
!HIY!!(!!.N!.O)GO o 23
IPI(NTIPD.NE.11G0 Y0 26
Irtl.Ge xygo 70 29
Go 10 23
@3 NYILDshYIEDOY
GO Y0 22
a4 1TA6LE11 100}
IPINTIED. AT .0) P:!NY 34
IPINTIED.8T.¢) NTYIEDHy
3¢ ronu‘vfguolt'vutn ¢ ROWS O% COLUMNS TZED WWILE DOING ALGQRITHM, F
LINSY o IN T2g wERE REOMDERED, OTHERS LEFT TN OLD ORDERe)
Do 2y ryei mslze
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)

30

31

32
29

33

és

i0

100
200

110
iis

MIO(ITYaMYLID)

RgES Tes2,0

NFACTE{

Do 28 TIs¢,NTIED
NFACTUNFAQYeTY

Call PERMUTE(NTIED ITARLE!

Do 30 ysi,NTIED
MPO(TaNTIEDJJINMT(ToNTIEDITABLE(JU))
DO 31 Jysi,MST2E
ME(JJIeMTOCJY)

NiJJiagy

CALL SORT2(MY, M, MSIZE,=1)

CaLL Qe emS22r . NSIZE, M, N, )
IP(R,LY.(RREST~EPS)IGO TO 29
RRES YaR

DO 32 JJm1,MSITE
MYSAVEC LI ENTO YD

CONTINUE

DO 33 UJmLaMNSIZE

MY (JJ)SMTSAVE L JJ)
MYCJJYaMTBAVEL JJ)

MidJYegy

CALL SORY2(MX,M,MSIZE,=1)
NTIEDsY

IPeI, LY KKYIGROD TO 22

ReRBEST

II(R.tn.-¥.0!CALL COtMSIZE NSIZE,  MiNyH)
Ir(me, €0, sRETURN

PRINT 40,3EXT,NY

FORMATtint ,0a8/7/773K ,3x,1627/7)
Do 100 yeti,u527E

PRINT 200,!?(!).(A(MT(I).NY(J))?JnioNlIZEI.D"O(NT(!l)
CONTINUE

FORMAY (410 ,12,46F7.3.F8,2)
RETURN

END

SUBROUTINE NyDt¢ MoNMSTZE, USTZEsR,MTO,HT0, DN, ONO,NT, NT, IQXT,NC)

COMMON 1«100.18)
DIMENSTON wMy(100)

DIMENSYINAN HAMSTIE) JN(NSTZE) MT(mSITE) o4 NTINSIZE)
DIMENSTON !TO(NSIIE)aNTOlNi‘!:)1DN(NS!lslobNOCNSIZI’
DIMENSTAN TYABLE(L6) 2v2E(i¥0), NTSAVE(200),TEXTLS)
ErSal, c.s

DO 3§ Tuy,MSIZE

ME(Ilem(Y)

MY(I)eY

CALL S0GYTIINX, T, NSTTE,el)

oo 5 tei,N9%2L

MYtIIeN(2)

NP(I)mt

CALL SORTZ(MXINT NSIZL,e!)

Dol10 pgi,m872E

MYO(TIaNT(T)

Dotls Jal,NSILL

NYO () eNT L)

DO 20 Jei . NO2IE

D"oc

Aymp,
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DO 15 rst,MS12E
DYSDLog (MYLTI NTI YY)
XN® I
XLBXLoUANCAINTLT) A NT(J))
15 ConTINUE
DN(JYmxug/DY
20 CONTINUE
DO 42 Tal,NSYIZE
12 onO(NTCTY ) mONCD)
CALL ORDERI(DN,NSIZE,NT,N,NTQ)
RIESTRe2.0
KKINSTZE={
DO 21 Tal.¥K
ITIE(Iyal
Jalet
IF(DNO(NT(Z)) . EQ,DNOINT(J)IIITTE(T )Y
IF(DNOINT(Z)) . EQ.0.) ITIE(T)=0
21 CONTINUE
ITIE(NST2E) 80
NTIEDsY
Is0
22 lsleg
IPCITIE(I).NE.0)GO TO 23
IFCNTIED.NE. 1160 70 24
IPCI.GE . XKKIGO TO 25
GO0 Y0 22
23 NYIEDaNTIED |
GQ Y0 22
24 1TABLE( ) amy
IFINTIED.GT,.90) PRINT 34
IPINTIED.GY. 90 NTIED®Y
34 FORMAT (oMORE THAN 9 ROWS OB COLUMNS YIED wMILE DOING ALGORITHM, F
LIRSY ¢ IN YIE wERE REORDERED, OVWERS LEFT IN OLD ORDERe)
DO 27 rIei,NSIZE
27 NYOLIDIaNTIIY)
RBESYIQQ.U
NPACTumE
DO 28 TY=y,NYIED
23 NPACTSNFAGTeYI
DO 29 IIsi,NFAC?
CaLL PERMUTE(NTIED, ITABLE)
Do §0 Jywi,NTRED
30 NT0(ZenTIEDOJJISNT(ToNTIEDeRTABLEC UV
DO 3% JyJ=i,NSIZE
MXCJJIBNTO L)
31 NJUIeYY
CALL SORT2(MX,N,NSIZE,el}
CALL CCME2ZE NSIRE, M, Ny
IPLR,LY, (RAESTEP8))G0 T0 29
i AgESTen
DO 32 Juwi,NSITE
32 NYSAVELJJIONTO L)
29 CONTINUE
i DO 33 JJUmg,NSIZE
NPOJJanNTSAVE L)
MY CJJIENTSAVEC JJ)
33 NpJdJreyy
CALL SORT2(MX,N,NSIZE,=})
NYIEDe
IPCL.LY, XK)G0 TO 22
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10

100
200

60

100

RuRBEST

Iffﬂ.tﬂ.-f.O)CALL CCIRBTIZE,NSIZL: Mon,R)
IFtMC,EQ. L IRETURN

PRINT 10,2EXT,AT

FORMAT (1ML, 908777380 ,2x,16177)

po 100 yai,MsI2E

PRINT 280, mr(2), (atMT () NTEJ) 17U, NST2E)
CONTINUE

FORMAT({Mp,12,16F7.3)

IIn0

PRINT 200,TI,(ONOENT(JY),Jo3sNSI2E)
RETURN

END

SUBROUTINE QRDERID,MSIZE.MT#M,MT0)

CoMMON a1100,34)

DIMENSTON MX(100)

DIMENSTON DU(MSTZE) MY(MSIZE) JM{MSTZE) ,MTOIMSIZE)
CALL SORT@(D,MT0,MS1ZE,-1)

DO 60 14l,mMSTZE

MY{I)eHTO(Y)

M(I)a]

CALL SORT2(MYO,M,MSIZE, =1}

END

SUBROUTINE CCENSIZE,NSIZE, M,N;R)
COMMON At100,14)
DIMENSTON MIMSTZE ) NINST2E)
DIMENSTON YLTST(100),v 157¢300)
sxs0,

Sy=p,

$9Xxay,

Ssvys),

SPXYs(,

SamQ,

X MeMST2E

XLNaNST?IE

X Msy, /YL M

Y NeY, /xLN

Do 4 Jei,NS1ZE
XaN(J)
YLIST(J)eNeXLN

DO 2 Iwi,mM8T2E

Mt 1)
XLIST T rmyoXLM

Do 400 yui,msrZE
TaXLIST(I)

Do 4100 w4 ,NSIZE
131010 ¢ A ANE)
PaAtl, )

ApuPel

YRepel2

SxuSXeXpP

SYsSvevp

SEXuSEX APl
SsYasSSvaevpell
SAXYagpxYalpPell
Spe3Pep
SIDNaggX~(SX)0ee2/0P
SSDYagsye(8Y)ee/8P
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GRS

ot

|

SPDXYNSPXYVeSXeSY/SP
RRIESQORY (SSDXe8SD*
IrenR,rp,0,) A0,
IF(RR,NE,0,.) KReSPDXY/RR
ENDSENDS
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THE MOMENT COMPRESSION COMPUTER PROGRAM

A. INTRODUCTION

This Appendix describes the computer program MOMCOMP which implements the
gradient algorithm in Chapter HI of Part II. The main program logic is shown in the flow chart
in Fig. F-1.

B. DATA RESTRICTIONS

The program can handie an indefinite number of non-negative matrices, each up to
75x75 in size. The data packages for successive matrices are stacked one after another.

C. FORMAT FOR INPUT DATA

The listing of MOMCOMP includes, for illustrative purposes, the data package required
as input for the second example in Chapter Il of Part . This is a 10x10 matrix and three
starting points are requested for the row or column optimizations.

The data input package for each matrix consists of two types of cards. The first card
type contains the three variables N, M, IRAN punched according to format (315).

Hero
N = number of matrix rows
M = number of matrix columns
IRAN = number of randomized starts for the optimization in ¢ach
direction.(Row and column optimizations therefore consume 2 -
IRAN starts.)

The second type of data card is used to read in a single row of the input matrix. Successive
rows are punched en distinct cards, with 2ach card employing format (6011).

Preceding page blank 125
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If the matrix contains up to 60 columns exactly, N+1 data cards will be required,
namely one of type 1 and N of type 2.

D. SUBROUTINE DESCR:PTION
The portions of MOMCOMP include:
n Main Program, which controls execution.
(2)  DATA subroutine, which reads input data.

(3) PERMUGEN subroutine, which generates randomized permutations for
use 1s startinyg points.

“) ZMIN subroutine, which minimizes the sum of either the row or
column moments, using the iterative gradient algorithm described in

Chapter 11l of Part 1.

5 LAP subroutine, used by ZMIN, which solves linear assignment
problems.

(6)  Z function, which computes the objective function, taken as

N
! o
J © i§=:l f for optimization of column order
Z-=
| M
- z ¢ for optimization of row order
Moo

Z is the root-mean-square moment arm.

(7)  Subroutines INITCOL and INITROW, which prepare the daty needed
by ZMIN for minimizing Z. The required data are the W’'s and H's in the
expression (se¢ Eq. 8-9) in Chapter 111 of Part 11).

L L
= ] - P
Z(x) L [i)&:'l L] ij);l ij'n'g]
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... s

where L = N(M) for optimization of the column (row) order, and where
Ty, @), ... M denotes a permutation of the L columns (rows).

E. PROGRAM FLOW CHART

Figure F-1 is the computer program flow chart for the Moment Compression
Algorithm,

START

1

READ DATA FOR NEXT PROBLEM
(EXIT IF ALL PROBLEMS DONE)

!

INITCOL INITIALIZES DATA FOR OPTIMIZATION
OF COLUMN ORDER

!

OPTIMIZE COLUMN ORDER BY USING ZMIN TO
MINIMIZE Z. STARTING ORDER IS GENERATED
BY PERMGEN (THIS BOX IS EXECUTED IRAN TIMES)

t

INITROW INITIALIZES DATA FOR OPTIMIZATION
OF ROW ORDER

!

OPTIMIZE ROW ORDER BY USING ZMIN TO MINIMIZE
Z, STARTING ORDER IS GENERATED BY PERMGEN
(THIS BOX IS EXECUTED IRAN TIMES)

Vo149 12

s FIGURE F-1. Flow Chart for Moment Compression Algorithm

F. ERROR MESSAGES

: {1) The only error message from ZMIN is that convergence has not ue-
4 curred after 100 iterations (each iteration is one gradient step and
involves one lincar assignment problem ).
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(2)  Five possible ERRCR messages may occur in LAF:
" Type 1: Step | has been unsuccessful at covering all zeros

Type 2: Same - B
Type 3: Matrix element for the linear assignment problem is negative
(should never occur)
Type 4: Step 2 fails to find a primed zero in the indicated row (should
never occur) )
Type 5: Same as Type 3 error (should never occur).

E G. TIMING
‘The following times should be multiplied by twice IRAN.

’- o 1 10x10 problem: consumed roughly 3 seconds for optimization of row
E . (or colurnit) order for esch starting point.

) 16x16 problem consumed roughly 10 seconds for optimization of row
(or column) order for each starting point.

H. COMPUTER PRINTOUT
The computer printout from MOMCOMP consists of the following:
H The input data

(2)  The number of the starting point (ranging from | through IRAN) and
whether the row or column order is being optimized

«3) For each starting point, the sequence of permutations and Zs generated
by successive iterations of the subrouiine ZMIN.

There is no attempt to choose among the several solutions obtained by varying the starting
points and no printout of “the” final matrix since this is generally non-unique. The user must
extract, from the printout, the row and column permutations which minimize their respective
s

The computer output must be interpreted as follows. If the rew permutation is printed
as #(1),...,#(N), then the optimal rearrangement has, as its (@ row, the it row of the
input matrix. The user is reminded that the pesmutations [w(1),... ®(N)] and
[N+1-%2(1), ... N+ L-m(N)} are equivalent, cach being the other in reversed order.
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MOMENT COMPRESSION ALGORITHM PROGRAM

10 3

PROGRAM MOMCOMP

P,SCHUFTITZER X344

COMMQON u(ioo)‘V(75075)oD(75775100(75(75)31““‘5,&“"‘
DIMENSTAN TPERM(100)

INITIALT?E RANNOM NUMBER GENFRATYOR

Xe RANPNIY,14468)

FINDS TmAN LOCAL MIN FOR RnW AND COLUMN PERNUTATIOND,
CONTINIE

CALL YTMF(SQ,5i7HREGIN NEw MATRIX,)

CallL DaTs

READS PATA

Call TIMF{36,L1HDATA IS IN, )

Call InyTeoL

CALL YYuF({vg, 1 IHINITCOIL NONR,)

COMPUTFS w AND W FOR CALYUMN PERMUTATIONS,

DO 2n Tet,IRAN

LaM
CALL PaAGFSXP
PRINT s9,1

Call PFRMGEN(IPERM,L)

Call TIME{%g, L YHPERMGEN NONE.,)

GENERATES PERMLTATION AF 14M,STOKES IN IPEuM,
Call TIwmF(%q,41MZMIN STARYS OPTIMIZATION OF CCLUMN URDER,)
Call Z™TI*tL,IPER™)

ZHIN FYINDS OPTTIMAL COLUMN PBRMUTATTION, STARTING S WOM [PEwu,
Call TYuri8qg,3gMZMIN EVDS ORTIMIZATYION OF fOLYMN QWDER, )
CONT INUE

Call INTTROW

CALL TImMP(t9,t SHINITROw DONE,}
COMPUTFS w AND M FOR Raw PERANUTATIOAN

DO 30 Tat,TRUN a&
LaN ?(od“ \ab\°
Call PAGESHP bes

PRINT 50,7

FORMAT{ 4PERGMEN CALLED FOR TIMES,Is)

Call PrRA~QENCIPERM,)

CALL TTmME(Y%g, L INPERNGEN DONE,)

Call TYmr(Yg,3an2MIN STANYS OPYI"IZAY!ON CF Rou OWDER,!
Cabl IMINIL,IPERM)

CALL TIME(%¢, 34nZMIN ENDS SRTINIZAYION OF RQOw OWDER,.)
CONTINIE
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FINDS APTIMAL 90w PERMUTATION, STARTING FhaM 1PEHM,
ip To0 ¢
EnD

SUBROUTINE DATA

COMMON L (100),M(78,75),D078475),C(757520JRAN,NyH
Call, PageSKkp

READ 40,8, 4, TRAN

FORMAT(31S)

PRINT 16,N,M,IRAN

FURMAT(oNEW CASE, N,M,TRAN 3 ¢,315)
Do 1a vgt,w

READ 20 tpel,dy.Jdsl, My

FORMAT (#1085

DIMENSTA* XID(L00}

Du 25 {e!.™

HEAD 24 (Intyl.Jsli, M)

FORMAT(4"T1)

DO 23 Jmi ™

DeI,Jdde INCJD

CUNTINUE

PRINT tg,t((2,J,0(1,J)),Ju1sM), I8 ,N)
FORMAT(,oQRTIAINAL MATRYX®Z/8I 4 UOtIsvi */(215,010,3))
PRINT 40

FUKMATL, DATA ALL READ INn o)

HETUDN

END

SUBROUTINE INITCOL

COMMON W(100) M(Y8,75),D(P5275),C(75:95)1RAN, N m
pIMENSTIAN 81100y

DO & Ist.N

Silie0,

DO 3 J.i.“

StY1) eSeTie DITLJY
CONY!Nug

00 15 Jel™®

wiJiel,

DO 10 :.1.“

Wiyl weJieDtI,JtASLIY
CUNYINUE

DO 30 Jei ¥

50 19 wgl,y

¥al,

DO 17 lsi¥
XaXentY, JYoDIL, M1 /5 )ee?
LIPFLEL] |

CONTINUE

DO 40 Jey,M

DO 39 xg M

BedMya will,J)

coNTINUE

Call PagtluNp

pﬂl“? ’u;"JpﬂtdiglJ.‘C.’
FORMAT(oZINTTCOL DONE.,  J wtJ) ¢s115,E88,00)
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PRINT 0, 06(JaM,MtJ, K}, KB 7M), 8L, ¥)
FORMATI 00 ¥ W{JsK) s1235,886,8))
RETURN

EnD

SURROUTINE INITROwW

COMMON (100 4MI78,75),DU78775),0¢76,751,TRAN,Nst
NIMENSTAN §(100,

DU 5 lay,M

StIyal,

Do 3 Jei N

SI1) ws(Te Dt Y, I

CONTINIIE

DO 15 Uet,N

wiJrel,

DO 10 To1,M

Widim wedyeDlW,I3/S(1)

CONTINVE

DO 30 Jet N

Uo lg wgt,y

Xav,

DO 17 Igl,N

XaXeD(J, TreD(K,I1)/5(1)0e?

HiJ.X)uX

CONT INE

Do 40 jey,N

D0 35 wgy,N

HEJaKim Wik, )

CONTINUE

Call PaGESKP

PRINY S 0ty ,wed))adsy, N

FORMAT( JeINTTRAK DONE, J o wiJy *st15,618.8))
PRINT a0, ¢0(d,%,HtJ,K)), ka8 7N), Jal ,N)
FORMAT o0 # MU JaX) wrt235,836,0))
Qe TURH

Eqp

SUBROUTINE PENMGENIIPERM,N)
DIMENSTON IPgRw(100),yy¢100)
00 10 vot,n

IPERM(T )0

XX{Z ) amanDN( 0}

CalL SORT2eXX,IPERM,N,)
RETURN

€ND

FUNSTION 2iM,IPERM)

COMMON Lti00),mi?8,75),D095/75)3C195,25) 430N, NHDu,nCOL
DIMENSTON TRPRM(100)

2!0.

D0 10 Jaut.®

2aleni ) epLOAYR TPERNL ) 106

D0 % wal,w
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IaZent ), x ) oF (OATF (IPERM( JI®IPERMIKY)
CONTINIE

Is SQRYF(ZIFLOATF (M))

RE TURN

E4D

SUBROUTINE ZMIN(M,IPERM)

COMMON wt 100y ,m(78,75),D(Y8775)iC(75:75),1RAN,NROw MCOL
DIMENSTONYPERH(L100), TenRPERILI00), NpwPER(LII Ny, yodrey
INEws 2¢¥,TPERY)

PAINT 10, ((I,IPERMITY),Ind,M)

FORMAY (s¢ 2IMIN INITIALIZED AS FOLLOWS, PERMUTATION®/(215))
PRINT 15,2MEW

FORMAY 1 CRUERTIVE FoNu #,520,8

Do 40 gt ,m

NEWPERCI)s IPEAMLY)

00 100 [ Lrwi,100

Call TTur(Ng,2aWZMIN REGINS  ONE ITERATION,)
Lusiii

U0 UP To 400 LNOPS oFf ITERATIONS

DO 21 Te1,¥

ICURPER(TY® NEWPER(T)

Z0LD= INFW

GENERATE ¢ MATRIX

DO 25 gmyq,M

Yidis O,

DO 23 wgd,¥

YiJ)s viJYel, oWl J,K)eF L OATYFIICURFER(KY)
CONTINUE

DO 30 Jmis™

Do 28 wgt,m

CtJaliu wiJIoFLOATF(K)ow2e YC(JIOFLOATF(K)
CONTINUE

ILe LAP¢ M,NEWFER,0RY)

Ir (TL.e0 .1y RETURN

INEws Z¢v,NEWPER)

PRINT 40,LL,200LD,2NEW

FORMAT e IMIN ITERATION MUMBER *,13,0,0LD aNU NEW OwJECTIVE FungtI
10nSe o,2020,9)

PRINY 8%, (2, NEWPER({T)),Yelrm)

FORMAT ol PERMUYATION®/(215))

IFe2nguazoLpy 100,640,180

Do 70 I.‘l“

IFINEWPERLT) NELICURPER(INY GO YO 1UD
CONTINIE

GO YD tso

CONTINIE

PRINY qan bl

FONYAT (o TTERATIONS END AT LAOPO}IS)

REYURN

END

FUNCTION L4PI N, IPERNOT,08)

COMON wt100),M079,7%5),D(7999731,C¢95,78),3RAN,NROW,MCOL

LINEAR ASSIGHMENY PROgLEX SOLVER WITw & X & €, ¢ IS BESYROYED,
QETUGN GIT LABwg IF SUCCESIFULY 3 IF UNSUCCESSFUL,
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C OUTPUT 1S APTIMAL PERMuUTAYION IN IGERMOT, MINTMUM OHJECTIVE FCN IN OBY
DIMENSTON IPERmOY 100y, 17gR0( 800y, y2gr0(500),
1upRK (SN0, MEOLCOV(100), mROACOVELEr), ST (200,
DIMENSTAL Ue100),yve100)

[+ CALL TIME(Y9,30MLAP BEGINS)
Sysso,
3 ISTEPY a0
IERRORS
c SUAB CuMULATIVE AMOUNT SUBTRACTED FHOM A kOw OR COLUMN,
¢ PRINT §,0001,J,C02,J10,dn8,8), I8g,N)
cl FORMAT(2785,E18,7,215,€618,7,215, ELR,7,215,F18,7 )
c SUBTRACY SMALL ELEMENT FRQM EACM ROW
DY 10 Ys1,n
XlC(I.')
DO 5 ys2,N
§ Xa AMIVY Y,00T1,J))
Subz §irgex
D0 10 Jmt,n
1 Ctlsdda CtT,J)=x
c SUBTRARY SMALL EST ELEMENT FROM Eask COLUKA
0% 20 Jat,n
xlC(icJ)
LY 18 142,n
ig Xm AMInY (¥,0(1,4))
SURE Sirgex

DO 20 1si,N
0 CtI dre o(l,d) =X
PRINT 1 0 ((T,d,CtIod1), 0l N), 18, n)
STORE ALl 2ERUS IN o ONE-DIVENSIONAL 4RNAY, N2EWO 2LHQS,
KeTH ZPQ0 TS AT IZERO(N),J2RRQ(K),
MARK(K)g 1 IF YHIS ZERC IS STARRED, %el IF IT IS PhlMgp, av OTrEhwISE
AZEROwN
U0 30 Tat,M
00 30 gmi,N
Irtcel, gy 25,27,%0
25 CtI,Jy o",
PRINT 24,1,4
26 FORMAT( #ELEMENT®, 215, ¢RESEY TO ZERUS)
G0 T0 400
a7 NZEROw NZERDe
IZERO(%7ERD)S ¥
JIERC(»yFROY Y
MARK(NIFRO) 0D
30 CONTINUE
38 FORMAT( IERO PRINTOUT=/{2415))
INITIALI2E COVERS
MCOLCOV Timy IF COLUNN T %S COVERER,y IF UNCOVENED., SIM. FOR uHAwrnu
INITIALYZ2E STARS
NSTARGEp
N3TAR® NUMRER OF STARRED ENTRIES
DO INITIAL STARRING RY SUBAEBSSIVELY CMOOSING ZEKOS WHICH WAVE YHE LEAST
NUMBER oF OTMES® ZEROS IN TME COVEREHED PORTION OF EITWEW R0m OR COLUMN,
TWEN CAVEL TWAT ROW OR QOLUMA,
DO 2000 Tei,N
MROWCQV¢T)el
000 mcOLCOV Y140
HINLINT g2 N
HEINSUME 4N
¢ AT END OF PaSS, ICOVEReO mE4nS ALL ZEROS ARE QOVEWED. ICOVER POSITIVE

oo

o oan
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)
romad

&

I3
&
¢ MEANS IINCOVEREDN 2FROS EXISTF AND LWESY IS THE REST UF THEM, MAVING THE
¢ FEWEST(MINLINE) OTHER UNCOVERED ZEROS IN IYS ROwW OF £OLUMN. -
DO 2200 xad,NZERO «L
¢ COMPUTE  NUMAEQ OF UNCOVERED ZEROS IN LINE WIth KeTH,EXCLUDING K ITSELF.
IFIMAOweOVITZERDLKY ) ,E0,T) G0 To 220U
IF(MCOLCNVIJZEROLK)Y ) ,ER, 1) GO TO 2200 e
C K IS UMgOVERFD, L
ICOvVERNy ;
INKROwWs(
INKCOLmD
¢ INKROW(TNKCOL )aNO, OF (NCOVERED ZEROS ITNRCw(COLUN) wI'H «[
DO 215h L e1,N2ERD
1F(TZERPQ XY ,EQ.TZEROILY) GO TO @120
IP(J2eRo (W) NE,JZERO(LY) GO TO 2is0
c L IS IV SAME COLUMN AS X AND L NE,x, NOW TESY IFUNCOVERED, .
IF(MROWLCOVITZEROILI ) JENLIY GO YO 2450 .
INKCOLaTNKLOL ¢
GO T0 2189 ,
2120 IFIMCOLEOVUIJZEROIL)ILEG.1) QO YO 245y :
IF(L,gn,«) 50 10 2150 i
c L IS Iv SaMp ROW aS K, DISTINCT; AND UMCOVERED,
INKROWeTHKROWSL
2150 CONTINUE
INKLI'ea MINO(INKROW,INKCOL)
INKSUMeTNKROWS TNKEOL

IFCINKLINE,GT.MINLINE) GO TQ 2200
IFCINKLINE.EQ. ¥INLINE AND INKSUM,GE,MINSUF) GO YO 2200
MINLINEy INKLINE
MINSUME TNWNSUM
LEESTe K
IF(MINLYNE.EQ. 0, AND, NINSUM,LE. 1) GO TO 23up
2200 contIinee
IF(ICOVER.EQ.0) GO TO 250p
[+ UNCOVERED YERO AT LBEST IS NOW GOVERED.
2300 MROWCOV(IIERO(LBEST))ug
MCOLCOVIJIFRO(LBEST Y ) my
MARK (LRESY)uY
NSTARWN§T AR
c PRINT 2480, YZERO(LBESY),JIRRO(LBEST)
C2450 FORMATIGINITIALIZATION COVERS ZERO ATe, 215)

GO YO ?71N0

2500 CONTINUE

b STARRING OF ZEROS DOMNE,COLUMNS PROPERLY COVERED+s UNCOVER WQwS

40

¢ PRINT X8, (tK,I2ERQ(K), JZEROIK) ,MARK(K)) ,Kn1,NZERD)

] PRINT al,ngTAR

€80  FORMAT( ePRELIMINARIES DONE: ® 18, ¢STakS, ¢ )
IPINSTAR.EO.N) GO Yo 400

¢

c

¢

C SYTeP

100 ISTEP e TSYEPL oy

¢ CALL TIwEtS9,LeMLAP BEGINS 3TERPY)

TreXSterl.av.8%0) Go to 03
ITEPr et

104 IFLAGer
ISTEPPL » 2STEPFLOY
IPCISTepP . GY.9ONZERD)Y GO TO 606

DO 40 Tal.N
MROwWCOVeY)ed l
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130
C
€135
150

c
ciss

180
192

etal

193
C195

(9]
o

<9
o

a0

220
¢

¢
c2al

AY END OF LOOP,AT 140, IFLAG =0 IF NO UNCOVEWRED ZEWUS EXIS?, :aD
21 IF POSSYRLY UNCOVERED 2EROS EXIST. EXTH,y PASSES TNROUG' THIS LOOP
APPEAR tn RE NFECESSARY TO ENSURE NN UNCOVERED ZENNS ExIST,
DO 1Ap x=y,NZERD

1 ¢ 11

Iks IZERO(N)

JXE JZFRCLK}

IFL(MROWROVIIKY#MCOLCOV(JXY ), GT.0) GO 1O 8"

IFLAGET

MARK(K)met

PRINT 425,7K,Jx

FORMaTt  oSTEPL MAS PRIMED AN UNCOVEWEL ZERO ATw,215)

Ir TWEDE NO STARREN ZERO IN Row Ik, GO YO SYEP 2, IF THERE IS a ZERD
AY L, POVER THTIS ROW AND UNGOVER TwE EOLUMN OF L.

HEPEAT TTLL alLlL ZEROS ARE COVEREL, THEN GO To0 STep 3,

no 130 {a1,n2ER0

IF(22e00(L ) NELIX) GO T0 130

IFCL.EC . x) GO TO 430

IF(™aRu ey NF.Y) GO TO 130

G2 T0 1g°

CONTINUE

PaINT ¢ %8

FORMAT(4STEP 1 FOUND NO SYARRED ZERO In TWIS HOW,wENT TO STEP 24
GQ YO 207

IslZERn Ly

JaJ2ERN( ()

PRINT i55,1,4 '

FORMAT (oSTEP 1 FOUND STARRED ZERDO TN ROW, al o, 2I8)
MROwCHY T )ml

MCOLCOvV Y)Y uh

IFLaGet

CONTINUE

IFCIFLAR) 190,190,195

CONTINIE

PRINT 191,ISTEPFL

FORMaT¢  oSTEP 1 DONE IN®, I5.¢ FASSES, ON TO STEp 3,e)

Go Yo 207

CONTINNE

PRINT 494, ISTEPFL

FORMAT(oSTEPL UNULONE AFTERe®2IS, ® PASSES, HESUME ,*)

0 TO 101

STEP 2, ¥y XPis LeMUNKRES K

LISTtJ)Y CONTAINS TYHE NUMARER OF ISyR(Jeg!

Avlzxu. SYEP2? ASSUMES 7SUBIXPL) EXYSTS AND SEARCHES FOR 2SupixPyey)
xplal

CAlL TIMF(39,18MLAP BERINS STERPQ)

LiSTtiye K¥

JYESTE JZERO(LIST(KP1))

DO 220 L=t ,N2ERD

IF(MaRK LY NEL L) 50 TO 220

IPLJ2EROILY.EQ.JTEST) RO Y0 240

CONTINUE

SEQUENCE WNaS TERMINATED,

PRINT 221, (T, LISYLI),YZEROCLISY(T) I, 2ERO(LISTIIN),20q.4Py)
FORMAT( /038R0 SEQUENCE FOR STER 2e/(415))

C STak SRIMES IN SPQUENCE, UNSTR STARS YN SEOUENCE
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270
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(s BeEs EsNsRe NN’ NoRs N e]
Lol
L
L =]

0

(2
N
W

3s0
354
]

C3el

Do 230 wnkal,kpPt

IF(MARK (L [STINK) )Y 222,230,225

MARK(LTSTINK) ) ol

GOy TO 230

MARK(LTST(NK)Y )30

CONTINIIE .

ERASE ALL PRIMES, UNCOVER ALL ROWS, COVER EVERY COLUMN CONTAINIAG
A STARRED ZEROQ,

L0240 Tat,N

MEOLCOv T80

MRAOWCOV (I )80

NSTARaP

DO 250 «ay,NZERO

IF(MaRN () 1242,250,245

MARK () g"

GO 10 25"

MCOLCOV(JZERDIX) ) =Y

N§TARE NSTARSY

CONTINUE

PRINT 255,NSTAR

FORMATE oSTEP 2 WAS TERMINATED wITH ¢,15, ¢STARSe)
PRINT U5, ((K,IZERO(K},IZERO(K), MARKIKY ), Kad,NZFROY
PRINT 225, ((T,%ROWCOV(Y),¥eQLcOviIy) Il Ny
IFENSTAR,EO,N) GO TO 410

Gy To 100

Kpilkp!‘i

LIST(xKPy 1 m|

ITESTs TZEROULY

A PRIMED 2ERO IN ROwW ITESY IS GUARANTEED YO EXIST,
DO 270 x=my,NIERO

IF(MARK (k) NE.ol) GO to 270

IFCIZEPO(K) ,EQ,ITEST) 60 To 280

CONTINUE

GO TC 601

KPi{m K9101

LIST(KR{)e K

GO T0 240

STEP 3

IF(NSTAR,EQ.NY GO YO 400

CALL TIME(39,14HLAP BEGINS STEPY)

LESS TuuM N INNEPENDENY STARRED ZEROS

COMPUTE ¥, TWE MINIMUM UNEOYERED NUMBER. IT IS STARILILY POSITIVE.
ADD % to PACW COVERED RQw, SUBTRACTY X FRO» EaCH UNCOVERED cOoLUMN.
PRINT N20,NZERD

FORMAT(STEP 3 BEGINS wlTwes 18, e2(RQS, ¢

PAINT 823, ((I,HRONCOVIT) ,MCALCOVII)I I 2udsn)

FORMAT (qEOVER PRINTOUTe/(3TH))

Xs 1,0"100

DO 3S% Yeyg,N

IP (MRQWCOVIZ).EQ, 1) GO TO ¥58

DO 380 Jsi,N

IriMcoLcoviJ) EQ,4) Go To 390

AmAMINYG (X,0(2,Jd0)

CONTINUE

CONTINUE

PRINT %40,X

FORMAT(,e8TEP 3 SUBTRACTSS, £20.8)

136 -




i =

L
& i o

- &

[ S1emrry
B

370

$71%
3a0

385
390

5900

39ed

¢
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IF(X,LF.0,y PRINT 370
FORMAY(,/¢8TEP 3 ERROR, MINIMUM UNGOVERED ELEMENT MNUN=POSITIVE®)
Ir (X,Lg.0,) GO To 402

DO 380 ya¢,N

IFtMROWEOVITY.EQ.O) GO YO 340

SURs SugeY

DO 375 j=my,N

Ctlsdin CUY,J)eX

CUNTINUE

ho 3¢ Jet,N

IptMcoLenvVedY . EG.1Y GO To 390

SuBs Stgey

50 395 !.15N

Ctl,;d) u £UI,J)eX

CONTINUE

DETETE YWE 2FNNS WwHICH BECAME POSITIVE, TwESE AKE BRECISELY Twe
TaICE=rQVERED ZEWDS

Ksl

KaKe?l

TPIK,GY N2ERO) GO YO 3920 >
IPCIMANWCOVITZEROIR) 1 emMpOLEOVIJRERDOIKY)) . NEL2) GO TO 39U°
PRINT 3008,I2EQ0(K),JZFRO()

FORMAT¢, 8TEP T NELETES ZERD aT v, 215)

NELETE x=T# ZES0, PUTTING LAST ZERO IN THIS SioOT.
IF{K,EQ0.N2ERO) GO To 3930

MARK(K)g MARK(NZERO)

MARK(NZFROI RO

IZERO(vys IZERN(NZEROD)

IZEROtU7CRO)Y =0

JIERO(¥y=2 JZERNINZERD)

JIERO(MPERN ) ul

NZERQG®R P ROmY

GO TO x9n¢

MARK{NIpRO) RN

12ERO(NYERD ) a0

J2ERC ‘7FRO}

NZERO® NZEROw!

CONTINUE

ADD ANv NEw 2EROS TO LIST. TWESE Cad ONLY RE IN TWE UWCOVERED aREA,
SINGCE aLL 7EROS ON LISY ARE COVEKEN,

Do 395 781N

IP(MROUCOVIT).EQ.1) GO YO 39S

DO 39‘ J.i.”

TF(ME0LEOVEJY.EQ. L) GO 1O 396

IF(CII, 00 302,393,304

Ctl,Jyel,

PRINTY 25,1,J

MEIEROaNPERD @Y

I2ERO(NyERD) 0]

JIERO{NyERO)m

MARK (N2pHO )Y a0

CONTINUE

CONYInrg

PRINT 194 ,NZERO

FORMAY( oSTEP 3 DONE, ¢,18s ¢2ERQS IN MPATRIX, @)

PRINT . ((tT,J,ClToud ) ynd,N), Tl 00

PAINT U8, (K, L7EROIN), JIEROIK) , MARK(K)) o NpY , NZERO)
PRINT 328,((1,RONCOVET), MEALEOVETI ) eTadany
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DONE , w S$TARS EXIST,
400 ORJe Sua
) DO 410 wxey,N
410 Inganor,:}:o .
DO 420 «el,NZERO
IFtMaRK ey NE. 1) GO TO €20
IPERMOY (T2ERAIRY I mJZERDIK ) '
420 CoNTINIE '
c PAINT a3n,0Ry "
C430 FORMATI4LAP SURCESSFUL, OBJECTIVE = #,£20,8//0 OPTIMAL PLACE Fon

c i1 -
¢ PRINT 44N, (tT, IPFUMOT LTy, Tol, Ny
C440 soRMAT 278, -
c PRINT € 0(11,J,CtTsu)),uni,NI,T81,0)
LaPal ) :
Rg TURN \g :
c s
c :
c ERROR MpSSAGES Ty
600 IERRORs TERRORSY »I ;
601  IEHRORe TErRROAy =
602 IERRORs TPRNOR Y
403 IERRORs YERRORe4 .
604 IERROKw TERAARY !
PRINT 420,TERRNR .

620 FORMAT(,L 4P FREOR OF TVYPEe ,15) :
LaPs! .
RETURN ]
END }
EnD
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APPENDIX G

C DISCUSSION OF MEASURES OF EFFECTIVENESS
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P

DISCUSSION OF MEASURES OF EFFECTIVENESS

A. RELATIONSHIP BETWEEN PLEASING PATTERNS AND MEASURES OF
EFFECTIVENESS

The ultimate goal of any data-organizing algorithm is the discovery of an informative
pattern of variable relationships, as evidenced by a pleasing matrix appearance.

Quantitative measures of effectiveness are used as surrogates for pleasing patterns, since
the latter concept is an intuitive one not easily described in words. The two MEs used in this
report, the summed bond energies and the summed moments of inertia. w.re chosen with the
hope that they would produce pleasing patterns by creating dense blocks of numbers. No
doubt other MEs can be devised for this purpose; the two proposed herc are useful because
they are both (1) amenable to simple algorithms for approximate optimization and (2)
successful at producing informative patterns. Any other useful ME must share these two
properties.

The algorithms used for optimization of these two MEs (the sequential selection
algorithm for the bond energy ME, and the gradient algorithm for the moment of inertia ME)
are suboptimal, that is, they do not rigorously optimize their respective MEs. Neither
algorithm should be faulted {or producing suboptimal solutions, because the ultimate goal is
producing informative pattemns, not rigorously optimizing the ME: the ME is merely a
surrogate for measuring the pleasingness of a pattern. Indeed, the satisfaction with the two
algorithms is based upon their procucing data orderings which are informative.

It often happens that several appealing data arrangements exist, ali with approximately
the same ME (namely, near the optimum), and all very similar.

Consequently, ties or nearties smong the ME can only be broken by a subjective
cyeball judgment as to which data arrangement is most pleasing. Until the eyeball judgment is
made, the tying and neartying configurations must be considered ceually aceptable. For
example, the five solutions in Table 2, or the four solution matrices in Figure 30, and the two

Preceding page blank
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solutions in Figure 28 must be considered equally acceptable. It is highly arbitrary to choose
one over the others on the basis of the numerical value of the ME.

In short, the ME is useful only for the first-order task of locating a handful of good
arrangements. The ME is not useful, except in ar arbitrary way, for the second-order task of
choosing among the good (and nearly equally pieasing) arrangements.

B. GENERALIZATION OF THE BOND ENERGY ME

The bond energy ME can be generalized to include bonds between matrix elements
which are not nearest neighbors. For example, a ME which weights the bonds according to the
iuverse square of the distance between the matrix elements (so~called gravity mode!) would be

.
ME=2 L — ;rs
i ors # g G-D%+G-s)?

It may be conjectured that such generalized MEs, when optimized over all row and
column permutations, are more successful at producing tightly clumped matrix elements than
the ME used for the Bond Energy Algorithm, which involved only nearest neighbor bonds.
There are two objections to the generalized ME, however. One is the significantly greater
computational difficulty in optimizing the ME over all row and column permutations. Once
the nearest neighbor feature is abandoned, the sequential selection procedure described in
Appendix D cannot be used.! Even more serious is the fact that whep diagonal bonds are
included in the ME, it is no longer possible to optimize the ME in two passes, one which
optimizes the row order, the other optimizing the column order. Instead, one would probably
have to iterate, as in the moment ordering algorithm, between row rearrangements and column
rearrangements.

The second objection to a generalized ME which includes diagonal bonds is that, for

sparse matrices, optimization of the ME may result in numerous bonds being attached to the
large matrix elements, thereby actually destroying the pleasing pattern. An example of this
phenomenon is given by the case
1 1 0 1 0 1
d= {1t 1 o0 d'= 1o s00 o
: 0 0 500 1 0 1

Note that row and column permutations can transform d! into d. Since d is in block form, it
conveys more information about the group structure and is preferable to dl, However, if uny

L. This proceduze can be modified, howevey, if the geacralized M inciudes only row-boads and columa-dondi (alt -
not necessirily neaseit neighbor), and tacks diagonal bonds,
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of the three following MEs (which allow next-to-nearest neighbor diagonal bonds) are used,
then d! is preferable to d. Evidently optimization of the bond energies leads to the attachment
of as many (diagonal) bonds to the “500” as possible, sven at the expense of block form. By -
contrast, when the diagonal bonds are excluded, optimization of the ME will produce block
form if this is possible. (See Appendix B.)

The three MEs are

ME () = 2 8 ay
. y

ME2 (b) SZ aﬁ du
y

ME3 (b) = X ay
i

1 bij>0

where Gﬁ =

G T a5+ YA o YAy YL,

s 120ag ey e Y ey ger Yoy ]
B = O jv1 Y8 5.1 *8ivy, Y6y

172 [84 541 Fohivny-r v Sy et 5i-1,j-1]

If any of the three are used, then d! hasa higher ME than d:

ME, (¢) = 510 ME; (d!) = 1002
ME, (d) = 510 ME, (d!) =2000
MEj (d) = 260.5 ME; (d!) = 1002

C. ADDITIONAL PROPERTIES OF THE MEs

(1)  All three algorithms are unaffected if all the matrix elements are
multiplied by a positive constant.
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2)

3)

All three algorithms are affected if a constant is added to the matrix

“element. In particular this implies sensitivity to the choice of origin of

the ordinal scale {e.g., 0,1,2 versus 1,2,3) when rankings are used as the
matrix elements,

The sensitivity of the Bond Energy Algorithm to the choice of k
depends on the relative magnitudes of the various matrix elements. If
all the matrix elements are 0 or 1, then the ME is independent of the
choice of k. If, however, the matrix elements vary greatly in magnitude,
it is recommended that k be set equal to 2 instead of i. This choice
preserves scale by not overemphasizing the largest elements. For
example, with k = 2, the bond strength between elements of sizes 5 and
7 will be the\/_B—S_, close to their average, rather than the inflated value
35whenk= 1.
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APPENDIX H

A MEASURE OF EFFECTIVENESS
FOR THE MOMENT ORDERING ALGORITHM
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A MEASURE OF EFFECTIVENESS
FOR THE MOMENT ORDERING ALGORITHM.

It has been pointed out that one of the properties of the algorithm is to drive the array
being operated upon toward a more diagonal form. This property has been utilized tc define!

a correlation coefficient, R, to measure the progress of the iterative procedure and the quality
of the final result. The coefficient has been defined as follows:
Sxy
R = ,
sty
2 ] M N <>
where 8¢ = T igl jgl aj; (Xl- X)-,
SIS )2
§¢ = = ai [ Y,-Y) <,
y T-1 3 j.—.21 "(J
| M N _ _
Sxy = :i"_:—i ‘;l J§I aij (Xl-X) (YJ'Y>
X = o a;: X
T &= V7
Y = = a: Y
T & & VY
>
r = ) a
o= Y
X, = i™M
Y, = N
8 = clement in ith cojumn and j‘h row.

1. Suggestion dus to De. Phillip Gould of IDA.
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Note that R is normalized so that its value always lies between zero and one. For the special
case of @ square matrix R=1 corresponds to only the main diagona! being filled, R=0 to a
random distribution of value throughout the array, and R= -1 to the opposite diagonal only
being filied. Initial values of R for arrays therefore are generally near zero, and as the algorithm
proceeds toward a solution. R generally incrcases. The final value of R is a measure of the
degree of diagonality obtained by the algorithm. It should be noted however, that tie
algorithm is z0t a direct attempt to maximize R, and that there are occasional cases in which
an iteration of the algorithm will decrease R irstead of increasing it.
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MULTIPLE SOLUTIONS TO THE MOMENT ORDERING ALGORITHM
FOR A SAMPLE 3 x 3 ARRAY
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MULTIPLE SOLUTIONS TO YHE MOMENT ORDERING ALGORITHM
FOR A SAMPLE 3 x 3 ARRAY.

In order to investigate the factors which lead to multiple solutions to the Moment
Ordering Algorithm, the following experiment was carried out. It deals with a 3 x 3 array, but
it is believed that the conclusions drawn may be useful in understanding the phenomenon for
the vastly mors complicated cases of larger arrays.

I. A sample 3 x 3 array (Fig. I-1) was constructed. For simplicity, its rows were
each nomalized to 10. Two.of the rows were fixed (7.2.1 and 3.,5.2), while the
elements in the third were allowed to take on various value » (always subject to
the normalization and the restriction that all elements be non-negative).

Lo B v
Al7 2 1
Bl3 5 2
CiX Y Z

13-69-4

FIGURE I~1. Experimental 3x3 Array

ta

For every possible combination of values for the clements of the third row. the
resulting array was analyzed. In particular, the number of possible stable
solutions was determined.

3. Thie results ure presented in Fig. |2, Every point inside the triangle represents a
possible third row of the array. The values of the three elements are read
upwards from each face. (Note that the sum of the distance from any point
inside to all three fuces of the equilateral triangle is constant -in this case equal
to 10.) The sets of elements corresponding to the first two rows are marked as
A and B, and for each other poini the multiglicity of solutions to the resulting
array is shown.

4. The resulting overall pattern indicates that when the third point is colinear, or
nearly so, with points A and 8 (that i, when the three rows are in a
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A
2=10

well-defined order within the coordinate system of Fig. I-2) only one solution
usually exists. However, in the region in the lower teft hand section of the
triangle, where the third point forins a triangle with A and B, rather than a
straight line, three stabie solutions exist. This indicates that, when one specific
linear ordering exists, the algorithm will find that ordering, but that when
several orderings are equally satisfactory, it may find each.

7754 one soLution exisTs
N [ 1wo SOLUTIONS EXisT
N EERE 11kee soLuTiONS EXIST

E %Y

x LN N P A Fa e
; it o (U AR SRR A AV AR YA YOD
% k » - «w s Lanay LAt d] reswlforrsfrres - e e
2573 YR % Y AN A Y A A Y A A A O
XA AR AT AR A AR AYYAYRIATND
RN AN A A O A N A Ny ANy SN LA
s A58 g e e Ve Ve P Y AN FRPERY Yy
] = “
X =10

FIGURE 1-2. Multiplicity of Solutions for a Small Array
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